English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/113383
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

DC FieldValueLanguage
dc.contributor.authorMarina, R.-
dc.contributor.authorGonzález, P.-
dc.contributor.authorFerreras, Mª del Carmen-
dc.contributor.authorCostilla, S.-
dc.contributor.authorBarrio, J. P.-
dc.identifier.citationMolecular Medicine Reports 11: 539- 546 (2014)-
dc.description.abstractWhole-body irradiation has been associated with liver function alterations. Ionizing radiation exposure increases oxidative stress and antioxidants can activate transcription of antioxidant target genes. In the present study, modifications of the liver antioxidant system were evaluated at 7 and 30 days following sub-lethal whole-body X-irradiation in male Wistar rats, which were intragastrically supplemented with quercetin or control solvent for 4 days prior to and 6 days following irradiation. Animal groups were as follows: CS, control, solvent-supplemented; CQ, control, quercetin-supplemented; RS, irradiated, solvent-supplemented; and RQ, irradiated, quercetin-supplemented. After 7 days, liver tissue from RS animals demonstrated marked hydropic panlobular degeneration with Mallory bodies in ballooning hepatocytes. These changes were mostly reversed in RQ rats. Lipid peroxidation in addition to copper/zinc superoxide dismutase (Cu/Zn-SOD), nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and Kelch-like ECH-associated protein 1 (Keap1) protein expression levels were all increased by X-irradiation, but significantly decreased by quercetin supplementation. Catalase (CAT) and NAD(P)H: quinone oxidoreductase 1 (NQO1) expression levels remained high in irradiated rats regardless of quercetin supplementation. After 30 days, the liver from RS animals had small portal infiltrates and diffuse cytoplasmic vacuolization, with reduced lipid peroxidation and reduced expression levels of CAT, NQO1, Nrf2 and Keap1, but consistently elevated Cu/Zn-SOD expression. RQ animals indicated reduced expression levels of Nrf2 and Keap1 30 days after irradiation. The present study demonstrated a quercetin-induced reduction of the oxidative stress-associated increase in Nrf2 expression that may be useful for preventing cancer cell survival in response to ionizing radiation exposure.-
dc.publisherSpandidos Publications-
dc.titleHepatic Nrf2 expression in altered by quercetin supplementation in X-irradiated rats-
dc.description.versionPeer Reviewed-
Appears in Collections:(IGM) Artículos
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf15,38 kBAdobe PDFThumbnail
Show simple item record

Related articles:

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.