Please use this identifier to cite or link to this item:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Mechanical Behavior of alumina toughened zirconia nanocomposites with different alumina additions

AuthorsDíaz, Luis A. CSIC ORCID; Rivera, Sergio; Fernández, Adolfo CSIC ORCID; Okunkova, Anna; Vladimirov, Yu G.; Torrecillas, Ramón CSIC ORCID CVN
Oxidic ceramic
Issue Date2014
PublisherTrans Tech Publications
CitationAdvances in Science and Tecnology 96: 61-66 (2014)
AbstractZrO2 and Al2O3 are monolithic ceramics used today in a wide variety of structural components. However, both materials present important drawbacks for some specific applications. In the case of Al2O3, its moderate strength (500 MPa) and toughness (4 MPa.√m) makes it unsuitable for high loading conditions. On the other hand, ZrO2 presents higher strength and toughness values (900 MPa and 6 MPa.√m) than Al2O3 but it is a material limited in its long-term behaviour due to its bad response to hydrothermal ageing and a pronounced tendency for subcritical crack growth. Due to this fact, ceramic nanocomposites made of Al2O3 and ZrO2 (ATZ and ZTA) have been developed in the last years in order to overcome the main drawbacks of the monolithic materials as they can combine the properties of both, strong and tough materials, simultaneously, with null ageing and even higher biocompatibility. In this work, several amounts of Al2O3 disperse phase (15, 35 and 50 vol %) were added to one ZrO2 matrix (CeO2 - 10 mol %) in order to see their effect on the mechanical properties, subcritical crack propagation and long-term reliability.
Identifiersdoi: 10.4028/
issn: 1662-0356
Appears in Collections:(CINN) Artículos

Files in This Item:
File Description SizeFormat
accesoRestringido.pdf15,38 kBAdobe PDFThumbnail
Show full item record
Review this work

Page view(s)

checked on May 26, 2022


checked on May 26, 2022

Google ScholarTM




WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.