English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/112241
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

DC FieldValueLanguage
dc.contributor.authorPino, Javier del-
dc.contributor.authorFeist, Johannes-
dc.contributor.authorGarcía-Vidal, Francisco J.-
dc.contributor.authorGarcía-Ripoll, Juan José-
dc.identifierdoi: 10.1103/PhysRevLett.112.216805-
dc.identifierissn: 1079-7114-
dc.identifier.citationPhysical Review Letters 112: 216805 (2014)-
dc.description5 pags.; 3 figs. PACS numbers: 73.20.Mf, 03.67.Mn, 42.50.Dv-
dc.description.abstractWhen in close contact, plasmonic resonances interact and become strongly correlated. In this work we develop a quantum mechanical model for an array of coupled particle plasmons. This model predicts that when the coupling strength between plasmons approaches or surpasses the local dissipation, a sizable amount of entanglement is stored in the collective modes of the array. We also prove that entanglement manifests itself in far-field images of the plasmonic modes, through the statistics of the quadratures of the field, in what constitutes a novel family of entanglement witnesses. Finally, we estimate the amount of entanglement, the coupling strength and the correlation properties for a system that consists of two or more coupled nanospheres of silver, showing evidence that our predictions could be tested using present-day state-of-the-art technology. © 2014 American Physical Society.-
dc.description.sponsorshipThis work has been funded by the European Research Council (ERC-2011-AdG Proposal No. 290981). We also acknowledge financial support from EU FP7 project PROMISCE, CAM Research Consortium QUITEMAD (S2009-ESP-1594), and Spanish MINECO projects FIS2012-33022 and MAT2011-28581-C02-01.-
dc.publisherAmerican Physical Society-
dc.titleEntanglement detection in coupled particle plasmons-
dc.description.versionPeer Reviewed-
Appears in Collections:(CFMAC-IFF) Artículos
Files in This Item:
File Description SizeFormat 
Entanglement.pdf620,96 kBAdobe PDFThumbnail
Show simple item record

Related articles:

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.