English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/111447
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Título

Extended Gabor approach applied to classification of emphysematous patterns in computed tomography

AutorNava, Rodrigo; Escalante-Ramírez, Boris; Cristóbal, Gabriel ; San José Estépar, Raúl
Palabras claveEmphysema
COPD
Texture analysis
Kernel Fisher analysis
Local binary patterns
Gabor filters
Fecha de publicación2014
EditorSpringer
CitaciónMedical and Biological Engineering and Computing 52: 393- 403 (2014)
ResumenChronic obstructive pulmonary disease (COPD) is a progressive and irreversible lung condition typically related to emphysema. It hinders air from passing through airpaths and causes that alveolar sacs lose their elastic quality. Findings of COPD may be manifested in a variety of computed tomography (CT) studies. Nevertheless, visual assessment of CT images is time-consuming and depends on trained observers. Hence, a reliable computer-aided diagnosis system would be useful to reduce time and inter-evaluator variability. In this paper, we propose a new emphysema classification framework based on complex Gabor filters and local binary patterns. This approach simultaneously encodes global characteristics and local information to describe emphysema morphology in CT images. Kernel Fisher analysis was used to reduce dimensionality and to find the most discriminant nonlinear boundaries among classes. Finally, classification was performed using the k-nearest neighbor classifier. The results have shown the effectiveness of our approach for quantifying lesions due to emphysema and that the combination of descriptors yields to a better classification performance. © 2014 International Federation for Medical and Biological Engineering.
Descripción11 pags.; 4 figs.; 6 tabs.
URIhttp://hdl.handle.net/10261/111447
DOI10.1007/s11517-014-1139-9
Identificadoresdoi: 10.1007/s11517-014-1139-9
issn: 0140-0118
Aparece en las colecciones: (CFMAC-IO) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
accesoRestringido.pdf15,38 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 

Artículos relacionados:


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.