English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/111304
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Citado 10 veces en Web of Knowledge®  |  Ver citas en Google académico
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar otros formatos: Exportar EndNote (RIS)Exportar EndNote (RIS)Exportar EndNote (RIS)
Título

Monocular Visual-Inertial SLAM-based collision avoidance strategy for Fail-Safe UAV using Fuzzy Logic Controllers: Comparison of two Cross-Entropy Optimization approaches

Autor Fu, Changhong; Olivares Méndez, Miguel A.; Suárez-Fernández, Ramón; Campoy, Pascual
Palabras clave Monocular visual-inertial SLAM
Fuzzy Logic Controller (FLC)
Unmanned Aerial Vehicle (UAV)
Collision avoidance
Cross Entropy Optimization (CEO)
Fecha de publicación 2014
EditorKluwer Academic Publishers
Citación Journal of Intelligent and Robotic Systems: Theory and Applications 73: 513- 533 (2014)
ResumenIn this paper, we developed a novel Cross-Entropy Optimization (CEO)-based Fuzzy Logic Controller (FLC) for Fail-Safe UAV to expand its collision avoidance capabilities in the GPS-denied environments using Monocular Visual-Inertial SLAM-based strategy. The function of this FLC aims to control the heading of Fail-Safe UAV to avoid the obstacle, e.g. wall, bridge, tree line et al, using its real-time and accurate localization information. In the Matlab Simulink-based training framework, the Scaling Factor (SF) is adjusted according to the collision avoidance task firstly, and then the Membership Function (MF) is tuned based on the optimized Scaling Factor to further improve the control performances. After obtained the optimal SF and MF, 64 % of rules has been reduced (from 125 rules to 45 rules), and a large number of real see-and-avoid tests with a quadcopter have done. The simulation and experiment results show that this new proposed FLC can precisely navigates the Fail-Safe UAV to avoid the obstacle, obtaining better performances compared to only SF optimization-based FLC. To our best knowledge, this is the first work to present the optimized FLC using Cross-Entropy method in both SF and MF optimization, and apply it in the UAV. © Springer Science+Business Media Dordrecht 2013.
URI http://hdl.handle.net/10261/111304
DOI10.1007/s10846-013-9918-3
ISSN1573-0409
Aparece en las colecciones: (CAR) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
accesoRestringido.pdf15,38 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 



NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.