English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/110829
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Combination of RGB and multispectral imagery for discrimination of Cabernet Sauvignon grapevine elements

AutorFernández Saavedra, Roemi E. ; Montes, Héctor ; Salinas, Carlota ; Sarria Paz, Javier F. ; Armada, Manuel
Palabras clavePrecision viticulture
Cabernet Sauvignon
Optical filters
Multispectral imagery
Image processing
Fecha de publicación2013
EditorMultidisciplinary Digital Publishing Institute
CitaciónSensors 13: 7838- 7859 (2013)
ResumenThis paper proposes a sequential masking algorithm based on the K-means method that combines RGB and multispectral imagery for discrimination of Cabernet Sauvignon grapevine elements in unstructured natural environments, without placing any screen behind the canopy and without any previous preparation of the vineyard. In this way, image pixels are classified into five clusters corresponding to leaves, stems, branches, fruit and background. A custom-made sensory rig that integrates a CCD camera and a servo-controlled filter wheel has been specially designed and manufactured for the acquisition of images during the experimental stage. The proposed algorithm is extremely simple, efficient, and provides a satisfactory rate of classification success. All these features turn out the proposed algorithm into an appropriate candidate to be employed in numerous tasks of the precision viticulture, such as yield estimation, water and nutrients needs estimation, spraying and harvesting. © 2013 by the authors; licensee MDPI, Basel, Switzerland.
Aparece en las colecciones: (CAR) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Montes_Combination_of_RGB_Sensors _3_7838-7859_2013.pdf2,22 MBAdobe PDFVista previa
Mostrar el registro completo

Artículos relacionados:

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.