English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/110735
COMPARTIR / IMPACTO:
Estadísticas
logo share SHARE   Add this article to your Mendeley library MendeleyBASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Título

Unitary Evolution and Uniqueness of the Fock Quantization in Flat Cosmologies with Compact Spatial Sections

AutorCastelló Gomar, Laura ; Cortez, Jerónimo; Martín de Blas, Daniel ; Mena Marugán, Guillermo A. ; Velhinho, José M.
Fecha de publicación2014
EditorElectronic Journal of Theoretical Physics
CitaciónElectronic Journal of Theoretical Physics 11: 43- 64 (2014)
ResumenWe study the Fock quantization of scalar fields with a time dependent mass in cosmological scenarios with flat compact spatial sections. This framework describes physically interesting situations like, e.g., cosmological perturbations in flat FriedmannRobertson-Walker spacetimes, generally including a suitable scaling of them by a background function. We prove that the requirements of vacuum invariance under the spatial isometries and of a unitary quantum dynamics select (a) a unique canonical pair of field variables among all those related by time dependent canonical transformations which scale the field configurations, and (b) a unique Fock representation for the canonical commutation relations of this pair of variables. Though the proof is generalizable to other compact spatial topologies in three or less dimensions, we focus on the case of the three-torus owing to its relevance in cosmology, paying a especial attention to the role played by the spatial isometries in the determination of the representation.
URIhttp://hdl.handle.net/10261/110735
Identificadoresissn: 1729-5254
Aparece en las colecciones: (CFMAC-IEM) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
LCastello.pdf277,05 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.