English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/110502
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Citado 12 veces en Web of Knowledge®  |  Ver citas en Google académico
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar otros formatos: Exportar EndNote (RIS)Exportar EndNote (RIS)Exportar EndNote (RIS)
Título

Enabling non-parametric strong lensing models to derive reliable cluster mass distributions - WSLAP+

Autor Sendra, Irene; Diego, José María ; Broadhurst, T.; Lazkoz, Ruth
Palabras clave Dark matter
Galaxies: clusters: general
Methods: data analysis
Fecha de publicación 2014
EditorOxford University Press
Royal Astronomical Society
Citación Monthly Notices of the Royal Astronomical Society 437(3): 2642-2651 (2014)
ResumenIn the strong lensing regime, non-parametric models struggle to achieve sufficient angular resolution for ameaningful derivation of the central cluster mass distribution. Clustermembers perturb lensed images and generate additional images, requiring high-resolution modelling. In practice, the required resolution for a fully non-parametric mass map is not achievable because the separation between lensed images is several times larger than the deflection angles by member galaxies.Herewe bypass this limitation by incorporating a simple physical prior for member galaxies, using their observed positions and their luminosity scaled masses. This highfrequency contribution is added to a relatively coarse Gaussian pixel grid used to model the more smoothly varying cluster mass distribution, extending our established WSLAP code (Diego et al.). We test this new code (WSLAP+) with an empirical simulation based on A1689, using all the pixels belonging to multiply lensed images and the observed member galaxies. Dealing with the cluster members this way leads to stable convergent solutions, without resorting to regularization, reproducing well smooth input cluster distributions and substructures. We highlight the ability of this method to recover 'dark' subcomponents and other differences between the distributions of cluster mass and member galaxies. Such anomalies can provide clues to the nature of invisible dark matter, but are difficult to discover using parametrized models where substructures are modelled on the basis of the visible data. With our increased resolution and stability, we show that non-parametric models can be made sufficiently precise to locate multiply lensed systems, thereby achieving fully self-consistent solutions without reliance on input systems from less objective means. © 2013 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society.
Versión del editorhttp://dx.doi.org/10.1093/mnras/stt2076
URI http://hdl.handle.net/10261/110502
DOI10.1093/mnras/stt2076
Identificadoresdoi: 10.1093/mnras/stt2076
issn: 0035-8711
e-issn: 1365-2966
Aparece en las colecciones: (IFCA) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
WSLAP.pdf1,04 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 



NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.