English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/110181
Compartir / Impacto:
Add this article to your Mendeley library MendeleyBASE
Citado 3 veces en Web of Knowledge®  |  Ver citas en Google académico
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar otros formatos: Exportar EndNote (RIS)Exportar EndNote (RIS)Exportar EndNote (RIS)

Breakup of three particles within the adiabatic expansion method

Autor Garrido, Eduardo ; Kievsky, A.; Viviani, M.
Fecha de publicación 2014
EditorAmerican Physical Society
Citación Physical Review C - Nuclear Physics 90: 014607 (2014)
ResumenGeneral expressions for the breakup cross sections in the laboratory frame for 1+2 reactions are given in terms of the hyperspherical adiabatic basis. The three-body wave function is expanded in this basis and the corresponding hyperradial functions are obtained by solving a set of second order differential equations. The S matrix is computed by using two recently derived integral relations. Even though the method is shown to be well suited to describe 1+2 processes, there are particular configurations in the breakup channel (for example, those in which two particles move away close to each other in a relative zero-energy state) that need a huge number of basis states. This pathology manifests itself in the extremely slow convergence of the breakup amplitude in terms of the hyperspherical harmonic basis used to construct the adiabatic channels. To overcome this difficulty the breakup amplitude is extracted from an integral relation as well. For the sake of illustration, we consider neutron-deuteron scattering. The results are compared to the available benchmark calculations. ©2014 American Physical Society
Descripción 20 pags. ; 7 figs. ; 2 tabls. ; A-F Apps. ; PACS number(s): 25.10.+s, 03.65.Nk, 31.15.xj
URI http://hdl.handle.net/10261/110181
Identificadoresdoi: 10.1103/PhysRevC.90.014607
issn: 0556-2813
Aparece en las colecciones: (CFMAC-IEM) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
EGarrido.pdf802 kBAdobe PDFVista previa
Mostrar el registro completo

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.