English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/109979
COMPARTIR / IMPACTO:
Estadísticas
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Título

The geometric norm improves ensemble forecasting with the breeding method

AutorPazó, Diego ; López, Juan M. ; Rodríguez, Miguel A.
Palabras clave3D-Var
Ensemble dimension
Norm types
Bred vectors
Fecha de publicación2013
EditorJohn Wiley & Sons
CitaciónQuarterly Journal of the Royal Meteorological Society 139(677): 2021-2032 (2013)
ResumenError breeding is a popular and simple method to generate flow-adapted perturbations for use in ensemble forecasting. It has traditionally been believed that the norm type used in periodic normalizations of bred vectors (BVs) does not have an important effect on the performance of BVs within ensemble forecasting systems. However, we have recently reported that the geometric norm has nice properties (e.g. enhancement of the ensemble diversity) that in principle render it more adequate to construct ensembles than other norm types like the Euclidean one. These advantages are clearly demonstrated here in a simple experiment of ensemble forecasting for the Lorenz-96 model with ensembles of BVs. Our simple numerical assimilation experiment shows how the increased statistical diversity of geometric BVs leads to improved scores regarding forecasting capabilities as compared with BVs constructed with the standard Euclidean norm. Moreover, we provide a theoretical basis for all these results by resorting to generic properties of spatially extended chaotic systems. © 2013 Royal Meteorological Society.
URIhttp://hdl.handle.net/10261/109979
DOI10.1002/qj.2115
Identificadoresdoi: 10.1002/qj.2115
issn: 0035-9009
e-issn: 1477-870X
Aparece en las colecciones: (IFCA) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
accesoRestringido.pdf15,38 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.