English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/108750
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Citado 5 veces en Web of Knowledge®  |  Pub MebCentral Ver citas en PubMed Central  |  Ver citas en Google académico
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar otros formatos: Exportar EndNote (RIS)Exportar EndNote (RIS)Exportar EndNote (RIS)
Título

The Heterocyst-Specific NsiR1 Small RNA Is an Early Marker of Cell Differentiation in Cyanobacterial Filaments

Autor Muro-Pastor, Alicia M.
Fecha de publicación 2014
Citación mBio 5 (3): e01079-14(2014)
ResumenDifferentiation of single cells along filaments of cyanobacteria constitutes one of the simplest developmental patterns in nature. In response to nitrogen deficiency, certain cells located in a semiregular pattern along filaments differentiate into specialized nitrogen-fixing cells called heterocysts. The process involves the sequential activation of many genes whose expression takes place, either exclusively or at least more strongly, in those cells undergoing differentiation. In the model cyanobacterium Anabaena (Nostoc) sp. strain PCC 7120, increased transcription of hetR, considered the earliest detectable heterocyst-specific transcript, has been reported to occur in pairs or even in clusters of cells, thus making it difficult to identify prospective heterocysts during the early stages of differentiation, before any morphological change is detectable. The promoter of nsiR1 (nitrogen stress inducible RNA1), a heterocyst-specific small RNA, constitutes a minimal sequence promoting heterocyst-specific transcription. Using confocal fluorescence microscopy, I have analyzed expression of a gfp reporter transcriptionally fused to PnsiR1. The combined analysis of green fluorescence (reporting transcriptional activity from PnsiR1) and red fluorescence (an indication of progress in the differentiation of individual cells) shows that expression of PnsiR1 takes place in single cells located in a semiregular pattern before any other morphological or fluorescence signature of differentiation can be observed, thus providing an early marker for cells undergoing differentiation. IMPORTANCE Cyanobacterial filaments containing heterocysts constitute an example of bacterial division of labor. When using atmospheric nitrogen, these filaments behave as multicellular organisms in which two different cell types (vegetative cells and nitrogen-fixing heterocysts) coexist and cooperate to achieve growth of the filament as a whole. The molecular basis governing the differentiation of individual vegetative cells, and thus the establishment of a one-dimensional pattern from cells that are apparently the same, remains one of the most intriguing aspects of this differentiation process. Recent evidence suggests that, at any given time, some cells in the filaments are more likely than others to become heterocysts when nitrogen limitation is encountered. The robust heterocyst-specific nsiR1 promoter, which is induced very early during differentiation, provides a valuable tool to analyze issues such as early candidacy or the possible role of transcriptional noise in determining the fate of specific cells in cyanobacterial filaments.
URI http://hdl.handle.net/10261/108750
DOI10.1128/mBio.01079-14
Identificadoresdoi: 10.1128/mBio.01079-14
issn: 2150-7511
Aparece en las colecciones: (IBVF) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
mBio.null1,19 MBUnknownVisualizar/Abrir
Mostrar el registro completo
 



NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.