English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/10698
Título

Application of non-linear optimization methods to the estimation of multivariate curve resolution solutions and of their feasible band boundaries in the investigation of two chemical and environmental simulated data sets

AutorTauler, Romà
Palabras claveMultivariate curve resolution (MCR)
Rotation ambiguities
Feasible band boundaries
Non-linear constrained optimization
Fecha de publicación10-ene-2007
EditorElsevier
CitaciónAnalytica Chimica Acta 595(1-2): 289-298 (2007)
ResumenAlthough alternating least squares algorithms have revealed extremely useful and flexible to solve multivariate curve resolution problems, other approaches based on non-linear optimization algorithms using non-linear constraints are possible. Once the subspaces defined by PCA solutions are identified, appropriate rotation and perturbation of these solutions can produce solutions fulfilling the constraints obeyed by the physical nature of the investigated systems. In order to perform such a rotation, an optimization algorithm based in the fulfilment of constraints and some examples of application in chemistry and environmental chemistry are given. It is shown that the solutions obtained either by alternating least squares or by the new proposed algorithm are rather similar and that they are both within the boundaries of the band of feasible solutions obtained by an algorithm previously developed to estimate them.
Descripción10 pages, 4 figures, 3 tables.-- PMID: 17606012 [PubMed].-- Printed version published Jul 9, 2007.
Issue title: Papers presented at the 10th International Conference on Chemometrics in Analytical Chemistry - CAC 2006 (Campinas, Brazil, Sep 10-14, 2006).
Versión del editorhttp://dx.doi.org/10.1016/j.aca.2006.12.043
URIhttp://hdl.handle.net/10261/10698
DOI10.1016/j.aca.2006.12.043
ISSN0003-2670
Aparece en las colecciones: (IDAEA) Artículos
Ficheros en este ítem:
No hay ficheros asociados a este ítem.
Mostrar el registro completo
 

Artículos relacionados:


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.