English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/10642
logo share SHARE   Add this article to your Mendeley library MendeleyBASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Modeling Canopy Water content for Carbon estimates from MODIS data at Land EOS Validation sites

AutorZarco-Tejada, Pablo J. ; Ustin, S. L.
Palabras claveCanopy Water Content
Modeling methods
Fecha de publicación2001
ResumenThis paper reports on progress made to improve our understanding of the biophysical and ecological processes governing the linked exchanges of water, energy, carbon and trace gases between the terrestrial biosphere and the atmosphere by improving satellite data products for models. The project aims to tests new biophysical data products from MODIS and ASTER EOS sensors and incorporates them into the SiB2 and CASA models. Traditional carbon estimates of such models use NDVI satellite data as inputs, although it is known that NDVI saturates at high LAI values. Radiative transfer models PROSPECT, SAILH and SPRINT were used to study a water-based optical index from MODIS as a measure of canopy water content that potentially improve estimates of LAI, specifically for ecosystems having high LAI (>4). This study shows the validity of the new data product and the potential extent of model improvements for biospheric and atmospheric processes. Validation of the models and the data products is conducted at EOS core land validation sites part of AmeriFlux.
DescripciónIn Proceedings of the IEEE 2001 International Geoscience and Remote Sensing Symposium, IGARSS'01, Sydney, Australia, 9th-13th July, 2001
Aparece en las colecciones: (IAS) Comunicaciones congresos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
21.pdf102,52 kBAdobe PDFVista previa
Mostrar el registro completo

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.