English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/10637
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Ver citas en Google académico
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar otros formatos: Exportar EndNote (RIS)Exportar bibText (RIS)Exportar csv (RIS)
Título

Using Support Vector Machines to automatically extract open water signatures from POLDER multi-angle data over Boreal regions

Autor Pierce, J.; Díaz-Barrios, Martha; Pinzón, J.; Ustin, S. L.; Shih, P.; Tournois, S.; Zarco-Tejada, Pablo J. ; Vanderbilt, V. C.; Perry, G. L.
Palabras clave POLDER
Inundated vegetation
Boreal Regions
Vector Machines
Fecha de publicación 2002
ResumenBoreal wetland ecosystems cover an estimated 90 x 106 ha, about 36% of global wetlands, and are a major source of trace gases emissions to the atmosphere [1]. Four to 20 percent of the global emission of methane to the atmosphere comes from wetlands north of 40°N latitude [2]. Large uncertainties in emissions exist because of large spatial and temporal variation in the production and consumption of methane. Accurate knowledge of the areal extent of open water and inundated vegetation is critical to estimating magnitudes of trace gas emissions. Improvements in land cover mapping have been sought using physical-modeling approaches [3],[4], neural networks [5],[6], and active-microwave [7], examples that demonstrate the difficulties of separating open water, inundated vegetation and dry upland vegetation. Here we examine the feasibility of using a support vector machine to classify POLDER data representing open water, inundated vegetation and dry upland vegetation.
Descripción In Proceedings of the IEEE 2002 International Geoscience and Remote Sensing Symposium, IGARSS'02, Toronto, Canada, 24-28th June, 2002.
URI http://hdl.handle.net/10261/10637
Aparece en las colecciones: (IAS) Comunicaciones congresos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
25.pdf245,87 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.