Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/10582
COMPARTIR / EXPORTAR:
logo share SHARE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Campo DC Valor Lengua/Idioma
dc.contributor.authorZarco-Tejada, Pablo J.-
dc.contributor.authorBerjón, A.-
dc.contributor.authorMiller, John R.-
dc.date.accessioned2009-02-11T11:13:29Z-
dc.date.available2009-02-11T11:13:29Z-
dc.date.issued2004-
dc.identifier.urihttp://hdl.handle.net/10261/10582-
dc.descriptionAirborne Imaging Spectroscopy Workshop, 8 October 2004 - Bruges, Belgiumen_US
dc.description.abstractProgress made on the detection of stress in heterogeneous crop canopies with hyperspectral remote sensing imagery is presented. High-spatial resolution multispectral remote sensing imagery was collected in 2002, 2003 and 2004 over vineyard and olive orchards in Spain. Imagery acquired with the Compact Airborne Spectrographic Imager (CASI) and the Reflective Optics System Imaging Spectrometer (ROSIS) in the visible and near infrared wavelength regions 400-950 nm at 1 m resolution, and with the Airborne Hyperspectral Scanner (AHS) in the reflective and thermal regions at 2 m resolution enabled the study of narrow-band vegetation indices and model simulation for estimation of chlorophyll content for chlorosis detection at the tree and vine level, as well as deriving thermal information function of the stress status. Ground data collection consisted of measurements of crown transmittance with a PCA LAI-2000 and geometrical measurements of crown projected area, height, crown cross-section, and biochemical constituents such as chlorophyll a+b and carotenoids, enabling the estimation of crown leaf area index, crown leaf density, biophysical variables related to the crown intercepted radiation, such as crop yield and canopy fractional cover, as well as crop functioning through chlorophyll content estimation. Leaf and canopy simulation models, such as PROSPECT, SAILH, FLIM, and rowMCRM were used and the scaling up methodology presented.en_US
dc.description.sponsorshipThe authors gratefully acknowledge the HySens project support provided through the Access to Research Infrastructures EU Program. Financial support from the Spanish Ministry of Science and Technology (MCyT) for the project AGL2002-04407-C03, and financial support to P.J. Zarco-Tejada under the Ramón y Cajal and Averroes Programs are also acknowledged.en_US
dc.format.extent324430 bytes-
dc.format.mimetypeapplication/pdf-
dc.language.isoengen_US
dc.rightsopenAccessen_US
dc.subjectCrop stressen_US
dc.subjectWater stressen_US
dc.subjectHyperspectral remote sensingen_US
dc.subjectVegetation indicesen_US
dc.subjectScaling upen_US
dc.titleStress Detection in Crops with Hyperspectral Remote Sensing and Physical Simulation Modelsen_US
dc.typecomunicación de congresoen_US
dc.description.peerreviewedPeer revieweden_US
dc.type.coarhttp://purl.org/coar/resource_type/c_5794es_ES
item.openairetypecomunicación de congreso-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
Aparece en las colecciones: (IAS) Comunicaciones congresos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato
40.pdf316,83 kBAdobe PDFVista previa
Visualizar/Abrir
Show simple item record

CORE Recommender

Page view(s)

814
checked on 28-mar-2024

Download(s)

795
checked on 28-mar-2024

Google ScholarTM

Check


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.