English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/10478
Compartir / Impacto:
Add this article to your Mendeley library MendeleyBASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL

Stress detection in orchards with hyperspectral remote sensing data

AutorKempeneers, P.; Backer, Steve de; Zarco-Tejada, Pablo J. ; Delalieux, S.; Sepulcre-Cantó, G. ; Morales Iribas, Fermín ; Aardt, J. A. N. van; Coppin, P.; Scheunders, P.
Palabras claveHyperspectral data extraction
Vegetation stress detection
Model inversion
Canopy reflectance model
Fecha de publicación3-oct-2006
EditorSociety of Photo-Optical Instrumentation Engineers
CitaciónProc. SPIE, Vol. 6359, 635911 (2006)
ResumenA technique is presented for detecting vegetation crop nutrient stress from hyperspectral data. Experiments are conducted on peach trees. It is shown that nutrient deficiencies that caused stress could an be detected reliably on hyperspectral spectra. During an extensive field campaign, foliar and crown reflectance has been measured with a portable field spectroradiometer. Airborne hyperspectral imagery is acquired over the orchard with the AHS hyperspectral sensor. The multi-level approach (leaf level and top of canopy) enabled the assessment of vegetation indices and their relationship with pigment concentration at both leaf and canopy levels, showing the potential and limitations of hyperspectral remote sensing on the different levels. Stress on the peach orchard is was treated with iron chelates to recover from iron chlorosis conditions. Blocks of trees treated with iron chelates created a dynamic range of chlorophyll concentration as measured in leaves. A relationship is obtained between the measured spectra and estimated biochemical parameters via inversion of a linked directional homogeneous canopy reflectance model (ACRM) and the PROSPECT leaf model. Numerical model inversion was conducted by minimizing the difference between the measured reflectance samples and modeled values. An improved optimization method is presented. Results are compared with a simple linear regression analysis, linking chlorophyll to the reflectance measured at the leaf level and Top of Canopy (TOC). Optimal band regions and bandwidths are analyzed
DescripciónEn: Remote Sensing for Agriculture, Ecosystems, and Hydrology VIII .--Proceedings of the International Society for Optical Engineering (SPIE), 11 September 2006 , Stockholm, Sweden
Versión del editorhttp://dx.doi.org/10.1117/12.687842
ISSN0277-786X (print)
Aparece en las colecciones: (IAS) Comunicaciones congresos
(EEAD) Comunicaciones congresos
Ficheros en este ítem:
No hay ficheros asociados a este ítem.
Mostrar el registro completo

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.