English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/103688
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Dextran-lipase conjugates as tools for low molecular weight ligand immobilization in microarray development

AutorHerranz, Sonia; Marciello, Marzia ; Olea, David ; Hernández, Margarita ; Domingo, Concepción ; Vélez, Marisela ; Gheber, Levi A.; Guisán, José Manuel ; Moreno-Bondi, María Cruz.
Fecha de publicación2013
EditorAmerican Chemical Society
CitaciónAnalytical Chemistry 85: 7060- 7068 (2013)
ResumenThe development of effective array biosensors relies heavily on careful control of the density of surface-immobilized ligands on the transducing platform. In this paper we describe the synthesis of new dextran-lipase conjugates for use in immobilizing low molecular weight haptens onto glass planar waveguides for immunosensor development. The conjugates were synthesized by immobilizing bacterial thermoalkalophilic lipases (Geobacillus thermocatenulatus lipase 2, BTL2) on agarose macroporous beads, followed by covalent coupling to dextran networks of variable molecular weight (1500-40000). The chimeras were immobilized via nonspecific hydrophobic interactions onto glass planar waveguides modified with 1,1,1,3,3,3-hexamethyldisilazane to obtain highly ordered and homogeneous molecular architectures as confirmed by atomic force microscopy. Microcystin LR (MCLR) was covalently bound to the dextran-BTL2 conjugates. The usefulness of this approach in immunosensor development was demonstrated by determining amounts of MCLR down to a few picograms per liter with an automated array biosensor and evanescent wave excitation for fluorescence measurements of attached DyLight649-labeled secondary antibody. Modifying BTL2 with dextrans of an increased molecular weight (>6000) provided surfaces with an increased loading capacity that was ascribed to the production of three-dimensional surfaces by the effect of analyte binding deep in the volume, leading to expanded dynamic ranges (0.09-136.56 ng L -1), lower limits of detection (0.007 ± 0.001 ng L -1), and lower IC50 values (4.4 ± 0.7 ng L -1). These results confirm the effectiveness of our approach for the development of high-performance biosensing platforms. © 2013 American Chemical Society.
Identificadoresdoi: 10.1021/ac400631t
issn: 0003-2700
Aparece en las colecciones: (ICP) Artículos
(CFMAC-IEM) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
accesoRestringido.pdf15,38 kBAdobe PDFVista previa
Mostrar el registro completo

Artículos relacionados:

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.