English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/103676
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Title

Depth-sensing indentation applied to polymers: A comparison between standard methods of analysis in relation to the nature of the materials

AuthorsGiró-Paloma, J.; Roa, J.J.; Díez-Pascual, Ana M. ; Rayón, E.; Flores, Araceli ; Martínez, M.; Chimenos, J.M.; Fernández, A.I.
KeywordsCSM
Hardness
Elastic modulus
Nanoindentation
Issue Date2013
PublisherPergamon Press
CitationEuropean Polymer Journal 49: 4047- 4053 (2013)
AbstractMechanical data (hardness and elastic modulus) from instrumented indentation testing are often extracted assuming linear elasticity in the initial portion of the unloading. The method is nowadays widely accepted as a convenient tool to interpret depth-sensing data, however it is a matter of controversy when applied to polymer materials due to their time-dependent behavior. More recently, Loubet and co-workers applied continuous stiffness measurements (CSM), consisting of superimposing a small oscillation to the quasi-static component of loading, to the study of the mechanical properties of polymers and proposed a new model to account for the apparent increase in the contact area detected at the first stages of contact. The present work offers a comparative study between the Loubet's model using CSM and the procedure yielding a single reading from the onset of unloading. A wide range of thermoplastic polymer materials including glassy and semicrystalline polymers have been investigated. The most important equations employed for each method are summarized and the advantages and disadvantages of employing one procedure or the other are discussed. The differences found between the results obtained from both approaches are discussed in relation to the nature of the polymer material. A comparison between mechanical data extracted from indentation measurements and from classical dynamic mechanical analysis is offered. © 2013 Elsevier Ltd. All rights reserved.
URIhttp://hdl.handle.net/10261/103676
DOI10.1016/j.eurpolymj.2013.09.010
Identifiersdoi: 10.1016/j.eurpolymj.2013.09.010
issn: 0014-3057
Appears in Collections:(ICTP) Artículos
(CFMAC-IEM) Artículos
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf15,38 kBAdobe PDFThumbnail
View/Open
Show full item record
Review this work
 

Related articles:


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.