English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/103350
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Title

Mechanistic intricacies of gold-catalyzed intermolecular cycloadditions between allenamides and dienes

AuthorsMontserrat, Sergi; Faustino, Helio; Lledós, Agustí; Mascareñas, José L. ; López, Fernando; Ujaque, Gregori
KeywordsCycloaddition
Density functional calculations
Gold Reaction mechanisms
Allenamides
Issue Date2013
PublisherJohn Wiley & Sons
CitationChemistry - A European Journal 19: 15248-5260 (2013)
AbstractThe mechanism of the gold-catalyzed intermolecular cycloaddition between allenamides and 1,3-dienes has been explored by means of a combined experimental and computational approach. The formation of the major [4+2] cycloaddition products can be explained by invoking different pathways, the preferred ones being determined by the nature of the diene (electron neutral vs. electron rich) and the type of the gold catalyst (AuCl vs. [IPrAu]+, IPr=1,3-bis(2,6-diisopropylphenyl)imidazole-2-ylidene). Therefore, in reactions catalyzed by AuCl, electron-neutral dienes favor a concerted [4+3] cycloaddition followed by a ring contraction event, whereas electron-rich dienes prefer a stepwise cationic pathway to give the same type of formal [4+2] products. On the other hand, the theoretical data suggest that by using a cationic gold catalyst, such as [IPrAuCl]/AgSbF6, the mechanism involves a direct [4+2] cycloaddition between the diene and the gold-activated allenamide. The theoretical data are also consistent with the observed regioselectivity as well as with the high selectivity towards the formation of the enamide products with a Z configuration. Finally, our data also explain the formation of the minor [2+2] products that are obtained in certain cases. The mechanism of the gold-catalyzed intermolecular cycloaddition between allenamides and 1,3-dienes has been explored by a combined experimental and computational approach. The formation of the major [4+2] cycloaddition products can be explained by invoking different pathways, the preferred ones being determined by the nature of the diene (electron neutral vs. electron rich) and the type of gold catalyst (AuCl vs. [IPrAu]+, IPr=1,3-bis(2,6-diisopropylphenyl)imidazole-2-ylidene, see scheme).
URIhttp://hdl.handle.net/10261/103350
DOI10.1002/chem.201302330
Identifiersdoi: 10.1002/chem.201302330
issn: 0947-6539
e-issn: 1521-3765
Appears in Collections:(IQOG) Artículos
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf15,38 kBAdobe PDFThumbnail
View/Open
Show full item record
Review this work
 

Related articles:


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.