English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/103248
COMPARTIR / IMPACTO:
Estadísticas
logo share SHARE   Add this article to your Mendeley library MendeleyBASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Título

Bridging classical and quantum plasmonics

AutorAizpurua, Javier ; Esteban, Ruben; Nordlander, Peter; Borisov, Andrei G.
Fecha de publicación2012
EditorSociety of Photo-Optical Instrumentation Engineers
CitaciónSPIE Photonics Europe (2012)
ResumenWhen two metallic nanoparticles are closely located to each other, a strong Coulomb interaction between the surface charge densities induced at each particle is produced. This situation supports the existence of a highly localized Bonding Dimer Plasmon (BDP) that results in a huge field enhancement at the interacting gap between the particles. This structure can be used as a canonical building block to sustain a variety of complex physical phenomena such as non-linear effects, quantum tunneling or photoemission, to cite a few. As the control of sub-nanometer separation distances is technological feasible, a classical description of the metal surface, based on the assumption of an abrupt change of the electron density at the surface of the metallic material, fails to correctly describe the optical response of a gap antenna. To account for the effect of the spill-out of the electrons at the surface of the metal, full quantum mechanical calculations have been developed with use of techniques such as time-dependent density functional theory (TDDFT). Since plasmonic nanostructures are usually large, a full quantum description of the optical response of standard plasmonic systems is not possible due to the huge number of electrons involved in the response. We present a new method to calculate quantum effects in large plasmonic systems based on parametric inputs derived from simpler full mechanical calculations. Our results of the optical response in small systems agree perfectly with full quantum calculations and allow us for a complete description of the modal redistribution and collapse of the field enhancement in subnanometer gap-antennas formed by large structures. With this quantum effective model (QEM), we bridge a gap between classical and quantum plasmonics.
DescripciónTrabajo presentado a: "SPIE Photonics Europe Conference" celebrada en Bruselas (Bélgica) del 16 al 18 de Abril de 2012.
URIhttp://hdl.handle.net/10261/103248
Aparece en las colecciones: (CFM) Comunicaciones congresos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
accesoRestringido.pdf15,38 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.