English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/103114
Compartir / Impacto:
Add this article to your Mendeley library MendeleyBASE
Citado 15 veces en Web of Knowledge®  |  Ver citas en Google académico
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL

Rain Identification in ASCAT Winds Using Singularity Analysis

AutorLin, Wenming ; Portabella, Marcos ; Stoffelen, Ad; Turiel, Antonio ; Verhoef, Anton
Palabras claveSea surface winds
Rain detection
Radar remote sensing
Quality control
Image processing
Fecha de publicaciónsep-2014
EditorInstitute of Electrical and Electronics Engineers
CitaciónIEEE Geoscience and Remote Sensing Letters 11(9): 1519-1523 (2014)
ResumenThe Advanced Scatterometer (ASCAT) onboard the Metop satellite series is designed to measure the global ocean surface wind vector. Generally, ASCAT provides wind products at excellent quality. Occasionally, though, ASCAT-derived winds are degraded by rain. Therefore, identification of rain can help to better understand the rain impact on scatterometer wind quality and to develop a proper quality control (QC) approach for scatterometer data processing. In this letter, an image processing method, known as singularity analysis (SA), is used to detect the presence of rain such that rain-contaminated wind vector cells are flagged. The performance of SA for rain detection is validated using ASCAT Level-2 data collocated with satellite radiometer rain data. The rain probability as a function of SA singularity exponent is calculated and compared with other rain sensitive parameters, such as the wind inversion residual or maximum-likelihood estimator (MLE). The results indicate that the SA is effective in detecting ASCAT rain-contaminated data. Moreover, SA is a complementary rain indicator to the MLE parameter, thus showing great potential for an improved scatterometer QC. © 2014 IEEE
Descripción5 pages, 3 figures, 1 table
Versión del editorhttp://dx.doi.org/10.1109/LGRS.2014.2298095
Identificadoresdoi: 10.1109/LGRS.2014.2298095
issn: 1545-598X
Aparece en las colecciones: (ICM) Artículos
Ficheros en este ítem:
No hay ficheros asociados a este ítem.
Mostrar el registro completo

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.