English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/102872
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Citado 6 veces en Web of Knowledge®  |  Ver citas en Google académico
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar otros formatos: Exportar EndNote (RIS)Exportar EndNote (RIS)Exportar EndNote (RIS)
Título

Improving inertial Pedestrian Dead-Reckoning by detecting unmodified switched-on lamps in buildings

Autor Jiménez Ruiz, Antonio R. ; Zampella, Francisco ; Seco Granja, Fernando
Palabras clave Signals of opportunity
Light/illumination
Pedestrian dead-reckoning
Smartphone
Indoor localization
Fecha de publicación 2014
EditorMultidisciplinary Digital Publishing Institute
Citación Jiménez, A.R.; Zampella, F.; Seco, F. Improving Inertial Pedestrian Dead-Reckoning by Detecting Unmodified Switched-on Lamps in Buildings. Sensors 2014, 14, 731-769.
ResumenThis paper explores how inertial Pedestrian Dead-Reckoning (PDR) location systems can be improved with the use of a light sensor to measure the illumination gradients created when a person walks under ceiling-mounted unmodified indoor lights. The process of updating the inertial PDR estimates with the information provided by light detections is a new concept that we have named Light-matching (LM). The displacement and orientation change of a person obtained by inertial PDR is used by the LM method to accurately propagate the location hypothesis, and vice versa; the LM approach benefits the PDR approach by obtaining an absolute localization and reducing the PDR-alone drift. Even from an initially unknown location and orientation, whenever the person passes below a switched-on light spot, the location likelihood is iteratively updated until it potentially converges to a unimodal probability density function. The time to converge to a unimodal position hypothesis depends on the number of lights detected and the asymmetries/irregularities of the spatial distribution of lights. The proposed LM method does not require any intensity illumination calibration, just the pre-storage of the position and size of all lights in a building, irrespective of their current on/off state. This paper presents a detailed description of the light-matching concept, the implementation details of the LM-assisted PDR fusion scheme using a particle filter, and several simulated and experimental tests, using a light sensor-equipped Galaxy S3 smartphone and an external foot-mounted inertial sensor. The evaluation includes the LM-assisted PDR approach as well as the fusion with other signals of opportunity (WiFi, RFID, Magnetometers or Map-matching) in order to compare their contribution in obtaining high accuracy indoor localization. The integrated solution achieves a localization error lower than 1 m in most of the cases. © 2014 by the authors; licensee MDPI, Basel, Switzerland.
URI http://hdl.handle.net/10261/102872
DOI10.3390/s140100731
ISSN1424-8220
Aparece en las colecciones: (CAR) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Jimenez_AR_Improving_Inertial_Pedestrian_sensors-14-00731.pdf4,3 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 



NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.