English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/102732
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Citado 4 veces en Web of Knowledge®  |  Ver citas en Google académico
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar otros formatos: Exportar EndNote (RIS)Exportar EndNote (RIS)Exportar EndNote (RIS)
Título

A generalized Beraha conjecture for non-planar graphs

Autor Jacobsen, Jesper Lykke; Salas, Jesús
Palabras clave Berker–Kadanoff phase
Transfer matrix
Generalized Petersen graphs
Beraha conjecture
Non-planar graphs
Potts model
Fecha de publicación 2013
EditorElsevier
Citación Nuclear Physics B 875: 678- 718 (2013)
ResumenWe study the partition function ZG(nk,k)(Q,v) of the Q-state Potts model on the family of (non-planar) generalized Petersen graphs G(nk, k). We study its zeros in the plane (Q,v) for 1≤k≤7. We also consider two specializations of ZG(nk,k), namely the chromatic polynomial PG(nk,k)(Q) (corresponding to v=-1), and the flow polynomial ΦG(nk,k)(Q) (corresponding to v=-Q). In these two cases, we study their zeros in the complex Q-plane for 1≤k≤7. We pay special attention to the accumulation loci of the corresponding zeros when n→∞. We observe that the Berker-Kadanoff phase that is present in two-dimensional Potts models, also exists for non-planar recursive graphs. Their qualitative features are the same; but the main difference is that the role played by the Beraha numbers for planar graphs is now played by the non-negative integers for non-planar graphs. At these integer values of Q, there are massive eigenvalue cancellations, in the same way as the eigenvalue cancellations that happen at the Beraha numbers for planar graphs. © 2013 Elsevier B.V.
URI http://hdl.handle.net/10261/102732
DOI10.1016/j.nuclphysb.2013.07.012
Identificadoresdoi: 10.1016/j.nuclphysb.2013.07.012
issn: 0550-3213
Aparece en las colecciones: (CFMAC-IEM) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Lykke.pdf1,69 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 



NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.