English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/102646
Compartir / Impacto:
Add this article to your Mendeley library MendeleyBASE
Citado 4 veces en Web of Knowledge®  |  Ver citas en Google académico
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar otros formatos: Exportar EndNote (RIS)Exportar EndNote (RIS)Exportar EndNote (RIS)

Canonical quantization of cylindrically symmetric models

Autor Mena Marugán, Guillermo A.
Palabras clave quantum cosmology
minisuperspace models
[PACS] Mathematical and relativistic aspects of cosmology
[PACS] Lower dimensional models
Fecha de publicación 1996
EditorAmerican Physical Society
Citación Physical Review D - Particles, Fields, Gravitation and Cosmology 53: 3156- 3161 (1996)
ResumenWe carry out the canonical quantization of the Levi-Cività family of static and cylindrical solutions. The reduced phase space of this family of metrics is proved to coincide with that corresponding to the Kasner model, including the associated symplectic structures, except that the respective domains of definition of one of the phase space variables are not identical. Using this result, we are able to construct a quantum model that describes spacetimes of both the Levi-Cività and the Kasner type, and in which the three-dimensional spatial topology is not uniquely fixed. Finally, we quantize to completion the subfamily of Levi-Cività solutions which represent the exterior gravitational field of a straight cosmic string. These solutions are conical geometries, i.e., Minkowski spacetime minus a wedge. The quantum theory obtained provides us with predictions about the angular size of this wedge. © 1996 The American Physical Society
URI http://hdl.handle.net/10261/102646
Identificadoresdoi: 10.1103/PhysRevD.53.3156
issn: 0556-2821
Aparece en las colecciones: (CFMAC-IFF) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
GMena.pdf145,24 kBAdobe PDFVista previa
Mostrar el registro completo

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.