English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/102644
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE
Exportar a otros formatos:

DC FieldValueLanguage
dc.contributor.authorFerrando, Néstor-
dc.contributor.authorGosálvez, M. A.-
dc.contributor.authorAyuela, Andrés-
dc.date.accessioned2014-09-29T12:45:57Z-
dc.date.available2014-09-29T12:45:57Z-
dc.date.issued2014-
dc.identifierdoi: 10.1021/jp409812x-
dc.identifiere-issn: 1932-7455-
dc.identifierissn: 1932-7447-
dc.identifier.citationJournal of Physical Chemistry C 118(22): 11636-11648 (2014)-
dc.identifier.urihttp://hdl.handle.net/10261/102644-
dc.description.abstractSurface-mediated processes, such as epitaxial growth, heterogeneous catalysis, and etching, are typically modeled by Kinetic Monte Carlo (KMC) methods. Traditionally, the KMC simulations are based on a top-down approach, where the simulation parameters-the rates for the corresponding atomistic processes-are obtained by manually fitting the simulation output to the experiment. More recently, following the development of Density Functional Theory (DFT), an alternative bottom-up approach has been developed, obtaining the atomistic rates from activation energies and attempt frequencies procured by DFT. Nevertheless, the procedure still requires a labor-intensive fine-tuning of the rates to improve the match between simulation and experiment. Accordingly, we propose to modify the traditional top-down and bottom-up approaches by automating the search of the atomistic rates with the help of an evolutionary algorithm. On the basis of a power spectral density analysis of both the experimental and simulated images, the procedure is applied to characterize wet etching of silicon and epitaxial growth of silver as examples of typical surface-mediated processes. © 2014 American Chemical Society.-
dc.description.sponsorshipWe acknowledge support by the JAE-Doc grant from the Junta para la Ampliación de Estudios program cofunded by FSE, the Ramón y Cajal Fellowship Program by the Spanish Ministry of Science and Innovation, the Basque Departamento de Educación and the University of the Basque Country UPV/EHU (Grant No. IT-366-07), the Spanish Ministerio de Innovación, Ciencia y Tecnología (Grant No. FIS2010-19609- C02-02), and the ETORTEK research program (NANO-IKER Grant No. IE11-304) funded by the Basque Departamento de Industria and the Diputación Foral de Guipuzcoa.-
dc.publisherAmerican Chemical Society-
dc.rightsclosedAccess-
dc.titleEvolutionary kinetic Monte Carlo: Atomistic rates of surface-mediated processes from surface morphologies-
dc.typeartículo-
dc.identifier.doihttp://dx.doi.org/10.1021/jp409812x-
dc.date.updated2014-09-29T12:45:57Z-
dc.description.versionPeer Reviewed-
dc.language.rfc3066eng-
dc.contributor.funderEuropean Commission-
dc.contributor.funderMinisterio de Ciencia e Innovación (España)-
dc.contributor.funderEusko Jaurlaritza-
dc.contributor.funderUniversidad del País Vasco-
dc.contributor.funderDiputación Foral de Guipúzcoa-
dc.identifier.funderhttp://dx.doi.org/10.13039/501100000780es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/501100004837es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/501100003086es_ES
Appears in Collections:(CFM) Artículos
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf15,38 kBAdobe PDFThumbnail
View/Open
Show simple item record
 


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.