English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/102641
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Citado 24 veces en Web of Knowledge®  |  Ver citas en Google académico
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar otros formatos: Exportar EndNote (RIS)Exportar EndNote (RIS)Exportar EndNote (RIS)
Título

Asymptotically anti-de Sitter wormholes

Autor Barceló, Carlos ; Garay, Luis Javier ; González-Díaz, Pedro F. ; Mena Marugán, Guillermo A.
Palabras clave [PACS] Canonical quantization
minisuperspace models
[PACS] Covariant and sum-over-histories quantization
[PACS] Mathematical and relativistic aspects of cosmology
quantum cosmology
[PACS] Lower dimensional models
Fecha de publicación 1996
EditorAmerican Physical Society
Citación Physical Review D - Particles, Fields, Gravitation and Cosmology 53: 3162- 3171 (1996)
ResumenStarting with a procedure for dealing with general asymptotic behavior, we construct a quantum theory for asymptotically anti-de Sitter wormholes. We follow both the path integral formalism and the algebraic quantization program proposed by Ashtekar. By adding suitable surface terms, the Euclidean action of the asymptoically anti-de Sitter wormholes can be seen to be finite and gauge invariant. This action determines an appropriate variational problem for wormholes. We also obtain the wormhole wave functions of the gravitational model and show that all the physical states of the quantum theory are superpositions of wormhole states. © 1996 The American Physical Society
URI http://hdl.handle.net/10261/102641
DOI10.1103/PhysRevD.53.3162
Identificadoresdoi: 10.1103/PhysRevD.53.3162
issn: 0556-2821
Aparece en las colecciones: (IAA) Artículos
(CFMAC-IFF) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
CBarcelo.pdf216,81 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 



NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.