English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/102586
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Citado 7 veces en Web of Knowledge®  |  Ver citas en Google académico
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar otros formatos: Exportar EndNote (RIS)Exportar EndNote (RIS)Exportar EndNote (RIS)
Título

Hysteresis conditions the vertical position of deep chlorophyll maximum in the temperate ocean

Autor Navarro, Gabriel ; Ruiz Segura, Javier
Palabras clave Physical and biological coupling
Global change
Deep chlorophyll maximum
Hysteresis
Fecha de publicación dic-2013
EditorAmerican Geophysical Union
Citación Global Biogeochemical Cycles 27(4): 1013-1022 (2013)
ResumenDeep chlorophyll maxima (DCMs) are widespread features of oceans. In temperate regions, DCMs are commonly associated with isopycnal surfaces that frequently move over a wide vertical range. This general association between DCMs and isopycnals remains unexplained by present theories, and we show here that it emerges from the seasonal history of the water column. Analysis of the formation of more than 9000 seasonal DCMs throughout the world's oceans consistently locates the vertical position of spring/summer DCMs in temperate seas at the density of the previous winter mixed layer, independently of this density value and future depth. These results indicate that DCM formation cannot be understood without hysteresis by solely considering the instantaneous response of phytoplankton to vertical gradients in physical and chemical fields. Present theories for DCM formation cannot explain why spring and summer DCMs are systematically found at a density equal to that of the previous mixed layer where a bloom has occurred. Rather than reacting to instantaneous physical forcing, the results indicate that DCMs operate as self-preserving biological structures that are associated with particular isopycnals because of their capacity to modify the physicochemical environment. Combined with remote sensors to measure salinity and temperature in the surface ocean, this new understanding of DCM dynamics has the potential to improve the quantification of three-dimensional primary production via satellites. This significant enhancement of the representation of oceanic biological processes can also allow increasingly realistic predictions of future biogeochemical scenarios in a warming ocean. Key Points Deep chlorophyll maxima operate as shelf-preserving structures The vertical position of DCM cannot be fully explained without hysteresis Deep chlorophyll maxima hysteresis is ubiquitous in the temperate ocean ©2013. American Geophysical Union. All Rights Reserved.
Versión del editorhttp://dx.doi.org/10.1002/gbc.20093
URI http://hdl.handle.net/10261/102586
DOI10.1002/gbc.20093
Identificadoresdoi: 10.1002/gbc.20093
issn: 0886-6236
e-issn: 1944-9224
Aparece en las colecciones: (ICMAN) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
hysteresis_conditions_Navarro.pdf1,91 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 



NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.