English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/10248

Remote Sensing in BOREAS: Lessons learned

AutorGamón, José Alfonso; Huemmrich, K. F.; Peddle, D. R.; Chen, J.; Fuentes, David; Hall, F. G.; Kimball, John S.; Goetz, S.; Gu, Jianfeng; McDonald, K. C.; Miller, John R.; Moghaddam, M.; Rahman, A. F.; Roujean, J. L.; Smith, E. A.; Walthall, C. L.; Zarco-Tejada, Pablo J. ; Hu, B.; Fernandes, Richard; Cihlar, J.
Palabras claveBoreal forest
Remote sensing
Carbon cycle
Land cover
Fecha de publicación2004
CitaciónRemote Sensing of Environment, 89(2), 139-162.
ResumenThe Boreal Ecosystem Atmosphere Study (BOREAS) was a large, multiyear internationally supported study designed to improve our understanding of the boreal forest biome and its interactions with the atmosphere, biosphere, and the carbon cycle in the face of global climate change. In the initial phase of this study (early 1990s), remote sensing played a key role by providing products needed for planning and modeling. During and after the main BOREAS field campaigns (1994 and 1996), innovative remote sensing approaches and analyses expanded our understanding of the boreal forest in four key areas: (1) definition of vegetation structure, (2) land-cover classification, (3) assessment of the carbon balance, and (4) links between surface properties, weather, and climate. In addition to six BOREAS special issues and over 500 journal papers, a principal legacy of BOREAS is its well-documented and publicly available database, which provides a lasting scientific resource and opportunity to further advance our understanding of this critical northern biome.
Versión del editorhttp://dx.doi.org/10.1016/j.rse.2003.08.017
Aparece en las colecciones: (IAS) Artículos
Ficheros en este ítem:
No hay ficheros asociados a este ítem.
Mostrar el registro completo

Artículos relacionados:

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.