English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/102456
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Citado 18 veces en Web of Knowledge®  |  Ver citas en Google académico
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar otros formatos: Exportar EndNote (RIS)Exportar EndNote (RIS)Exportar EndNote (RIS)
Título

Theoretical study of the ground-state structures and properties of niobium hydrides under pressure

Autor Gao, Guoying; Hoffmann, Roald; Ashcroft, N. W.; Liu, Hanyu; Bergara, Aitor ; Ma, Yanming
Fecha de publicación 2013
EditorAmerican Physical Society
Citación Physical Review B 88: 184104 (2013)
ResumenAs part of a search for enhanced superconductivity, we explore theoretically the ground-state structures and properties of some hydrides of niobium over a range of pressures and particularly those with significant hydrogen content. A primary motivation originates with the observation that under normal conditions niobium is the element with the highest superconducting transition temperature (Tc), and moreover some of its compounds are metals again with very high Tc’s. Accordingly, combinations of niobium with hydrogen, with its high dynamic energy scale, are also of considerable interest. This is reinforced further by the suggestion that close to its insulator-metal transition, hydrogen may be induced to enter the metallic state somewhat prematurely by the addition of a relatively small concentration of a suitable transition metal. Here, the methods used correctly reproduce some ground-state structures of niobium hydrides at even higher concentrations of niobium. Interestingly, the particular stoichiometries represented by NbH4 and NbH6 are stabilized at fairly low pressures when proton zero-point energies are included. While no paired H2 units are found in any of the hydrides we have studied up to 400 GPa, we do find complex and interesting networks of hydrogens around the niobiums in high-pressure NbH6. The Nb-Nb separations in NbHn are consistently larger than those found in Nb metal at the respective pressures. The structures found in the ground states of the high hydrides, many of them metallic, suggest that the coordination number of hydrogens around each niobium atom grows approximately as 4n in NbHn (n = 1–4), and is as high as 20 in NbH6. NbH4 is found to be a plausible candidate to become a superconductor at high pressure, with an estimated Tc ∼ 38 K at 300 GPa.
Versión del editorhttp://dx.doi.org/10.1103/PhysRevB.88.184104
URI http://hdl.handle.net/10261/102456
DOI10.1103/PhysRevB.88.184104
ISSN1098-0121
10.1103/PhysRevB.88.184104
E-ISSN1550-235X
Aparece en las colecciones: (CFM) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Theoretical study of the ground-state.pdf3 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 



NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.