English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/10241
COMPARTIR / IMPACTO:
Estadísticas
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Título

Hyperspectral Indices and Model Simulation for Chlorophyll Estimation in Open-Canopy Tree Crops

AutorZarco-Tejada, Pablo J. ; Miller, John R.; Morales, Arturo ; Berjón, A.; Agüera, Juan
Palabras claveChlorophyll content
Open canopy
Hyperspectral
Remote sensing
Radiative transfer
Olive tree
FLIM
Fecha de publicación2004
EditorElsevier
CitaciónRemote Sensing of Environment, 90(4), 463-476
ResumenAn investigation of the estimation of leaf biochemistry in open tree crop canopies using high-spatial hyperspectral remote sensing imagery is presented. Hyperspectral optical indices related to leaf chlorophyll content were used to test different radiative transfer modelling assumptions in open canopies where crown, soil and shadow components were separately targeted using 1 m spatial resolution ROSIS hyperspectral imagery. Methods for scaling-up of hyperspectral single-ratio indices such as R750/R710 and combined indices such as MCARI, TCARI and OSAVI were studied to investigate the effects of scene components on indices calculated from pure crown pixels and from aggregated soil, shadow and crown reflectance. Methods were tested on 1-m resolution hyperspectral ROSIS datasets acquired over two olive groves in southern Spain during the HySens 2002 campaign conducted by the German Aerospace Center (DLR). Leaf-level biochemical estimation using 1-m ROSIS data when targeting pure olive tree crowns employed PROSPECT-SAILH radiative transfer simulation. At lower spatial resolution, therefore with significant effects of soil and shadow scene components on the aggregated pixels, a canopy model to account for such scene components had to be used for a more appropriate estimation approach for leaf biochemical concentration. The linked models PROSPECT-SAILH-FLIM improved the estimates of chlorophyll concentration from these open tree canopies, demonstrating that crown-derived relationships between hyperspectral indices and biochemical constituents cannot be readily applied to hyperspectral imagery of lower spatial resolutions due to large soil and shadow effects. Predictive equations built on a MCARI/OSAVI scaled-up index through radiative transfer simulation minimized soil background variations in these open canopies, demonstrating superior performance compared to other single-ratio indices previously shown as good indicators of chlorophyll concentration in closed canopies. The MCARI/OSAVI index was demonstrated to be less affected than TCARI/OSAVI by soil background variations when calculated from the pure crown component even at the typically low LAI orchard and grove canopies.
Versión del editorhttp://dx.doi.org/10.1016/j.rse.2004.01.017
URIhttp://hdl.handle.net/10261/10241
DOI10.1016/j.rse.2004.01.017
ISSN0034-4257
Aparece en las colecciones: (IAS) Artículos
Ficheros en este ítem:
No hay ficheros asociados a este ítem.
Mostrar el registro completo
 

Artículos relacionados:


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.