English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/102374
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE
Exportar a otros formatos:

Title

Hierarchical self-assembly of telechelic star polymers: from soft patchy particles to gels and diamond crystals

AuthorsCapone, Barbara; Coluzza, Ivan; Blaak, Ronald; Lo Verso, Federica; Likos, Christos N.
Issue Date2013
PublisherInstitute of Physics Publishing
CitationNew Journal of Physics 15: 095002 (2013)
AbstractThe design of self-assembling materials in the nanometer scale focuses on the fabrication of a class of organic and inorganic subcomponents that can be reliably produced on a large scale and tailored according to their vast applications for, e.g. electronics, therapeutic vectors and diagnostic imaging agent carriers, or photonics. In a recent publication (Capone et al 2012 Phys. Rev. Lett. 109 238301), diblock copolymer stars have been shown to be a novel system, which is able to hierarchically self-assemble first into soft patchy particles and thereafter into more complex structures, such as the diamond and cubic crystal. The self-aggregating single star patchy behavior is preserved from extremely low up to high densities. Its main control parameters are related to the architecture of the building blocks, which are the number of arms (functionality) and the fraction of attractive end-monomers. By employing a variety of computational and theoretical tools, ranging from the microscopic to the mesoscopic, coarse-grained level in a systematic fashion, we investigate the crossover between the formation of microstructure versus macroscopic phase separation, as well as the formation of gels and networks in these systems. We finally show that telechelic star polymers can be used as building blocks for the fabrication of open crystal structures, such as the diamond or the simple-cubic lattice, taking advantage of the strong correlation between single-particle patchiness and lattice coordination at finite densities. © IOP Publishing and Deutsche Physikalische Gesellschaft.
DescriptionContent from this work may be used under the terms of the Creative Commons Attribution 3.0 licence.
Publisher version (URL)http://dx.doi.org/10.1088/1367-2630/15/9/095002
URIhttp://hdl.handle.net/10261/102374
DOIhttp://dx.doi.org/10.1088/1367-2630/15/9/095002
Identifiersdoi: 10.1088/1367-2630/15/9/095002
issn: 1367-2630
Appears in Collections:(CFM) Artículos
Files in This Item:
File Description SizeFormat 
Hierarchical self-assembly.pdf1,23 MBAdobe PDFThumbnail
View/Open
Show full item record
Review this work
 

Related articles:


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.