English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/102353
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:


Band structure engineering in topological insulator based heterostructures

AuthorsMenshchikova, Tatiana V.; Otrokov, M. M.; Tsirkin, S. S.; Samorokov, D. A.; Bebneva, V. V.; Ernst, A.; Kuznetsov, V. M.; Chulkov, Eugene V.
Electric field
Electronic structure
Topological insulators
Issue Date2013
PublisherAmerican Chemical Society
CitationNano Letters 13(12): 6064-6069 (2013)
AbstractThe ability to engineer an electronic band structure of topological insulators would allow the production of topological materials with tailor-made properties. Using ab initio calculations, we show a promising way to control the conducting surface state in topological insulator based heterostructures representing an insulator ultrathin films on the topological insulator substrates. Because of a specific relation between work functions and band gaps of the topological insulator substrate and the insulator ultrathin film overlayer, a sizable shift of the Dirac point occurs resulting in a significant increase in the number of the topological surface state charge carriers as compared to that of the substrate itself. Such an effect can also be realized by applying the external electric field that allows a gradual tuning of the topological surface state. A simultaneous use of both approaches makes it possible to obtain a topological insulator based heterostructure with a highly tunable topological surface state. © 2013 American Chemical Society.
Identifiersdoi: 10.1021/nl403312y
issn: 1530-6984
e-issn: 1530-6992
Appears in Collections:(CFM) Artículos
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf15,38 kBAdobe PDFThumbnail
Show full item record
Review this work

Related articles:

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.