English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/101614
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Citado 17 veces en Web of Knowledge®  |  Ver citas en Google académico
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar otros formatos: Exportar EndNote (RIS)Exportar EndNote (RIS)Exportar EndNote (RIS)
Título

Analysis of wave propagation in a two-dimensional photonic crystal with negative index of refraction: plane wave decomposition of the Bloch modes

Autor Martínez, Alejandro; Míguez, Hernán ; Sánchez-Dehesa, José; Martí, Javier
Fecha de publicación 2005
EditorOptical Society of America
Citación Optics Express, 13(11):4160-4174 (2005)
Resumenwork presents a comprehensive analysis of electromagnetic wave propagation inside a two-dimensional photonic crystal in a spectral region in which the crystal behaves as an effective medium to which a negative effective index of refraction can be associated. It is obtained that the main plane wave component of the Bloch mode that propagates inside the photonic crystal has its wave vector k⃗′ out of the first Brillouin zone and it is parallel to the Poynting vector (S⃗·k⃗′>0), so light propagation in these composites is different from that reported for left-handed materials despite the fact that negative refraction can take place at the interface between air and both kinds of composites. However, wave coupling at the interfaces is well explained using the reduced wave vector (k⃗) in the first Brillouin zone, which is opposed to the energy flow, and agrees well with previous works dealing with negative refraction in photonic crystals
Versión del editorhttp://dx.doi.org/10.1364/OPEX.13.004160
URI http://hdl.handle.net/10261/101614
DOI10.1364/OPEX.13.004160
Aparece en las colecciones: (ICMS) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
oe-13-11-4160.pdf568,37 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 



NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.