English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/101313
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Citado 5 veces en Web of Knowledge®  |  Pub MebCentral Ver citas en PubMed Central  |  Ver citas en Google académico
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar otros formatos: Exportar EndNote (RIS)Exportar EndNote (RIS)Exportar EndNote (RIS)
Título

Modeling bacterial population growth from stochastic single-cell dynamics

Autor Alonso, Antonio A. ; Molina, Ignacio; Theodoropoulos, Constantinos
Fecha de publicación 2014
EditorAmerican Society for Microbiology
Citación Applied and Environmental Microbiology 80(17): 5241-5253 (2014)
ResumenFew bacterial cells may be sufficient to produce a food-borne illness outbreak, provided that they are capable of adapting and proliferating on a food matrix. This is why any quantitative health risk assessment policy must incorporate methods to accurately predict the growth of bacterial populations from a small number of pathogens. In this aim, mathematical models have become a powerful tool. Unfortunately, at low cell concentrations, standard deterministic models fail to predict the fate of the population, essentially because the heterogeneity between individuals becomes relevant. In this contribution a stochastic differential equation (SDE) model is proposed to describe variability within single cell growth and division and to simulate population growth from a given initial number of individuals. We provide evidence of the model ability to explain the observed distributions of times to division, including the lag-time produced by the adaptation to the environment, by comparing model predictions with experiments from the literature for Escherichia coli, Listeria innocua and Salmonella enterica. The model is shown to accurately predict experimental growth population dynamics both for small and large microbial populations. The use of stochastic models for the estimation of parameters to successfully fit experimental data is a particularly challenging problem. For instance if Monte Carlo methods are employed to model the required distributions of times to division, the parameter estimation problem can become numerically intractable. We overcome this limitation by converting the stochastic description to a partial differential equation (backward Kolmogorov) instead, which relates to the distribution of division times. Contrary to previous stochastic formulations based on random parameters, the present model is capable of explaining the variability observed in populations that result from the growth of a few number of initial cells as well as the lack of it when compared to populations initiated by a larger number of individuals, where the random effects become negligible.
Descripción 12 páginas, 11 figuras, 2 tablas
Versión del editorhttp://dx.doi.org/10.1128/AEM.01423-14
URI http://hdl.handle.net/10261/101313
DOI10.1128/AEM.01423-14
ISSN0099-2240
E-ISSN1098-5336
Aparece en las colecciones: (IIM) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Modelling_bacterial_population.pdf4,97 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 



NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.