Please use this identifier to cite or link to this item:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

A metabolic strategy to enhance long‐term survival by Phx1 through stationary phase‐specific pyruvate decarboxylases in fission yeast

AuthorsKim, Ji-Yoon; Kim, Eun-Jung; López-Maury, Luis CSIC ORCID ; Bähler, Jürg; Roe, Jung-Hye
Issue Date2014
PublisherImpact Journals
CitationAging, 6(7): 597-601 (2014)
AbstractIn the fission yeast Schizosaccharomyces pombe, the stationary phase‐specific transcription factor Phx1 contributes to long‐term survival, stress tolerance, and meiosis. We identified Phx1‐dependent genes through transcriptome analysis, and further analyzed those related with carbohydrate and thiamine metabolism, whose expression decreased in Δphx1. Consistent with mRNA changes, the level of thiamine pyrophosphate (TPP) and TPP‐utilizing pyruvate decarboxylase activity that converts pyruvate to acetaldehyde were also reduced in the mutant. Therefore, Phx1 appears to shift metabolic flux by diverting pyruvate from the TCA cycle and respiration to ethanol fermentation. Among the four predicted genes for pyruvate decarboxylase, only the Phx1‐dependent genes (pdc201+ and pdc202+) contributed to longterm survival as judged by mutation and overexpression studies. These findings indicate that the Phx1‐mediated long‐term survival is achieved primarily through increasing the synthesis and activity of pyruvate decarboxylase. Consistent with this hypothesis, we observed that Phx1 curtailed respiration when cells entered stationary phase. Introduction of Δphx1 mutation compromised the long‐lived phenotypes of Δpka1 and Δsck2 mutants that are devoid of pro‐aging kinases of nutrient‐signalling pathways, and of the Δpyp1 mutant with constitutively activated stress‐responsive kinase Sty1. Therefore, achievement of long‐term viability through both nutrient limitation and anti‐stress response appears to be dependent on Phx1.
Publisher version (URL)
Appears in Collections:(IBVF) Artículos

Files in This Item:
File Description SizeFormat
10068Aging.pdf1,75 MBAdobe PDFThumbnail
Show full item record
Review this work

CORE Recommender

Page view(s)

checked on Jul 21, 2024


checked on Jul 21, 2024

Google ScholarTM




WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.