English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/101002
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Citado 7 veces en Web of Knowledge®  |  Ver citas en Google académico
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar otros formatos: Exportar EndNote (RIS)Exportar EndNote (RIS)Exportar EndNote (RIS)
Título

Deriving Predictive Relationships of Carotenoid Content at the Canopy Level in a Conifer Forest Using Hyperspectral Imagery and Model Simulation

Autor Hernández-Clemente, Rocío; Navarro-Cerrillo, Rafael M.; Zarco-Tejada, Pablo J.
Fecha de publicación ago-2014
EditorInstitute of Electrical and Electronics Engineers
Citación IEEE Geoscience and Remote Sensing Letters 52(8): 5206-5217 (2014)
ResumenRecent studies have demonstrated that the R570/R515 index is highly sensitive to carotenoid (Cx + c) content in conifer forest canopies and is scarcely influenced by structural effects. However, validated methods for the prediction of leaf carotenoid content relationships in forest canopies are still needed to date. This paper focuses on the simultaneous retrieval of chlorophyll (Ca + b) and (Cx + c) pigments, which are critical bioindicators of plant physiological status. Radiative transfer theory and modeling assumptions were applied at both laboratory and field scales to develop methods for their concurrent estimation using high-resolution hyperspectral imagery. The proposed methodology was validated based on the biochemical pigment quantification. Canopy modeling methods based on infinite reflectance formulations and the discrete anisotropic radiative transfer (DART) model were evaluated in relation to the PROSPECT-5 leaf model for the scaling-up procedure. Simpler modeling methods yielded comparable results to more complex 3-D approximations due to the high spatial resolution images acquired, which enabled targeting pure crowns and reducing the effects of canopy architecture. The scaling-up methods based on the PROSPECT-5+DART model yielded a root-mean-square error (RMSE) and a relative RMSE of 1.48 μg/cm2 (17.45%) and 5.03 μg/cm2 (13.25%) for Cx+c and Ca+ b, respectively, while the simpler approach based on the PROSPECT-5+Hapke infinite reflectance model yielded 1.37 & mug/cm2 (17.46%) and 4.71 μg/cm2 (14.07%) for Cx + c and Ca+b, respectively. These predictive algorithms proved to be useful to estimate Ca + b and Cx + c from high-resolution hyperspectral imagery, providing a methodology for the monitoring of these photosynthetic pigments in conifer forest canopies. © 2013 IEEE.
Versión del editorhttp://dx.doi.org/10.1109/TGRS.2013.2287304
URI http://hdl.handle.net/10261/101002
DOI10.1109/TGRS.2013.2287304
Identificadoresdoi: 10.1109/TGRS.2013.2287304
issn: 0196-2892
Aparece en las colecciones: (IAS) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
accesoRestringido.pdf15,38 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 



NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.