English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/101002
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:


Deriving Predictive Relationships of Carotenoid Content at the Canopy Level in a Conifer Forest Using Hyperspectral Imagery and Model Simulation

AuthorsHernández-Clemente, Rocío; Navarro-Cerrillo, Rafael M.; Zarco-Tejada, Pablo J.
Issue DateAug-2014
PublisherInstitute of Electrical and Electronics Engineers
CitationIEEE Geoscience and Remote Sensing Letters 52(8): 5206-5217 (2014)
AbstractRecent studies have demonstrated that the R570/R515 index is highly sensitive to carotenoid (Cx + c) content in conifer forest canopies and is scarcely influenced by structural effects. However, validated methods for the prediction of leaf carotenoid content relationships in forest canopies are still needed to date. This paper focuses on the simultaneous retrieval of chlorophyll (Ca + b) and (Cx + c) pigments, which are critical bioindicators of plant physiological status. Radiative transfer theory and modeling assumptions were applied at both laboratory and field scales to develop methods for their concurrent estimation using high-resolution hyperspectral imagery. The proposed methodology was validated based on the biochemical pigment quantification. Canopy modeling methods based on infinite reflectance formulations and the discrete anisotropic radiative transfer (DART) model were evaluated in relation to the PROSPECT-5 leaf model for the scaling-up procedure. Simpler modeling methods yielded comparable results to more complex 3-D approximations due to the high spatial resolution images acquired, which enabled targeting pure crowns and reducing the effects of canopy architecture. The scaling-up methods based on the PROSPECT-5+DART model yielded a root-mean-square error (RMSE) and a relative RMSE of 1.48 μg/cm2 (17.45%) and 5.03 μg/cm2 (13.25%) for Cx+c and Ca+ b, respectively, while the simpler approach based on the PROSPECT-5+Hapke infinite reflectance model yielded 1.37 & mug/cm2 (17.46%) and 4.71 μg/cm2 (14.07%) for Cx + c and Ca+b, respectively. These predictive algorithms proved to be useful to estimate Ca + b and Cx + c from high-resolution hyperspectral imagery, providing a methodology for the monitoring of these photosynthetic pigments in conifer forest canopies. © 2013 IEEE.
Publisher version (URL)http://dx.doi.org/10.1109/TGRS.2013.2287304
Identifiersdoi: 10.1109/TGRS.2013.2287304
issn: 0196-2892
Appears in Collections:(IAS) Artículos
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf15,38 kBAdobe PDFThumbnail
Show full item record
Review this work

Related articles:

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.