Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/100957
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Simulating water distribution patterns for fixed spray plate sprinkler using the ballistic theory

AutorOuazaa, Sofiane CSIC ORCID; Burguete Tolosa, Javier CSIC ORCID ; Burguete Tolosa, Javier CSIC ORCID ; Paniagua Antón, Pilar CSIC ORCID; Salvador Esteban, Raquel CSIC ORCID CVN; Zapata Ruiz, Nery CSIC ORCID
Palabras clavesprinkler irrigation
Ballistic model
Center pivot
kinetic energy losses
Fecha de publicaciónjul-2014
EditorCSIC - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)
CitaciónOuazaa S, Burguete J, Paniagua P, Salvador R, Zapata N. Simulating water distribution patterns for fixed spray plate sprinkler using the ballistic theory. Spanish Journal of Agricultural Research 12 (3): 850-864 (2014)
ResumenBallistic simulation of the spray sprinkler for self-propelled irrigation machines requires the incorporation of the effect of the jet impact with the deflecting plate. The kinetic energy losses produced by the jet impact with the spray plate were experimentally characterized for different nozzle sizes and two working pressures for fixed spray plate sprinklers (FSPS). A technique of low speed photography was used to determine drop velocity at the point where the jet is broken into droplets. The water distribution pattern of FSPS for different nozzle sizes, working at two pressures and under different wind conditions were characterized in field experiments. The ballistic model was calibrated to simulate water distribution in different technical and meteorological conditions. Field experiments and the ballistic model were used to obtain the model parameters (D50, n, K1and K2). The results show that kinetic energy losses decrease with nozzle diameter increments; from 80% for the smallest nozzle diameter (2 mm) to 45% for nozzle diameters larger than 5.1 mm, and from 80% for the smallest nozzle diameter (2 mm) to 34.7% for nozzle diameters larger than 6.8 mm, at 138 kPa and 69 kPa working pressures, respectively. The results from the model compared well with field observations. The calibrated model has reproduced accurately the water distribution pattern in calm (r=0.98) and high windy conditions (r=0.76). A new relationship was found between the corrector parameters (K1’ and K2’) and the wind speed. As a consequence, model simulation will be possible for untested meteorological conditions.
Descripción15 Pags.- 6 Figs.- 4 Tabls. This work was selected by the Organizing Committee of the XXXI Spanish National Irrigation Congress (XXXI Congreso Nacional de Riegos) to be submitted for publication in this journal.
Versión del editorhttp://dx.doi.org/10.5424/sjar/2014123-5507
URIhttp://hdl.handle.net/10261/100957
DOI10.5424/sjar/2014123-5507
ISSN2171-9292
E-ISSN1695-971X
Aparece en las colecciones: (EEAD) Artículos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
ZapataN_JAgricRes_2014.pdf691,42 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

SCOPUSTM   
Citations

25
checked on 16-mar-2024

WEB OF SCIENCETM
Citations

18
checked on 19-feb-2024

Page view(s)

491
checked on 27-mar-2024

Download(s)

422
checked on 27-mar-2024

Google ScholarTM

Check

Altmetric

Altmetric


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.