English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/100948
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Title

A conceptual model of check dam hydraulics for gully control: Efficiency, optimal spacing and relation with step-pools

AuthorsCastillo, Carlos ; Pérez Alcántara, Rafael; Gómez Calero, José Alfonso
Issue Date2014
PublisherEuropean Geosciences Union
Copernicus Publications
CitationHydrological Earth System Sciences 18: 1705-1721 (2014)
AbstractThere is little information in scientific literature regarding the modifications induced by check dam systems in flow regimes within restored gully reaches, despite it being a crucial issue for the design of gully restoration measures. Here, we develop a conceptual model to classify flow regimes in straight rectangular channels for initial and dam-filling conditions as well as a method of estimating efficiency in order to provide design guidelines. The model integrates several previous mathematical approaches for assessing the main processes involved (hydraulic jump, impact flow, gradually varied flows). Ten main classifications of flow regimes were identified, producing similar results when compared with the IBER model. An interval for optimal energy dissipation (ODI) was observed when the steepness factor c was plotted against the design number (DN, ratio between the height and the product of slope and critical depth). The ODI was characterized by maximum energy dissipation and total influence conditions. Our findings support the hypothesis of a maximum flow resistance principle valid for a range of spacing rather than for a unique configuration. A value of c=1 and DN ∼ 100 was found to economically meet the ODI conditions throughout the different sedimentation stages of the structure. When our model was applied using the same parameters to the range typical of step-pool systems, the predicted results fell within a similar region to that observed in field experiments. The conceptual model helps to explain the spacing frequency distribution as well as the often-cited trend to lower c for increasing slopes in step-pool systems. This reinforces the hypothesis of a close link between stable configurations of step-pool units and man-made interventions through check dams. © Author(s) 2014.
Publisher version (URL)http://dx.doi.org/10.5194/hess-18-1705-2014
URIhttp://hdl.handle.net/10261/100948
DOI10.5194/hess-18-1705-2014
Identifiersdoi: 10.5194/hess-18-1705-2014
issn: 1607-7938
e-issn: 1607-7938
Appears in Collections:(IAS) Artículos
Files in This Item:
File Description SizeFormat 
model_check_dam_Castillo.pdf3,09 MBAdobe PDFThumbnail
View/Open
Show full item record
Review this work
 

Related articles:


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.