English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/100762
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE
Exportar a otros formatos:


The canonical spectral sequences for poisson manifolds

AuthorsFernández, Marisa; Ibáñez, Raul; León, Manuel de
Issue Date1998
CitationIsrael Journal of Mathematics 106: 133- 155 (1998)
AbstractFor a compact symplectic manifold M of dimension 2n, Brylinski proved that the canonical homology group Hcan k(M) is isomorphic to the de Rham cohomology group H2n-k(M), and the first spectral sequence {Er(M)} degenerates at E1(M). In this paper, we show that these isomorphisms do not exist for an arbitrary Poisson manifold. More precisely, we exhibit an example of a five-dimensional compact Poisson manifold M5 for which Hcan 1(M5) is not isomorphic to H4(M5), and E1(M5) is not isomorphic to E2(M5).
Identifiersdoi: 10.1007/BF02773464
issn: 0021-2172
Appears in Collections:(CFMAC-IFF) Artículos
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf15,38 kBAdobe PDFThumbnail
Show full item record
Review this work

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.