English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/100743
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Citado 15 veces en Web of Knowledge®  |  Ver citas en Google académico
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar otros formatos: Exportar EndNote (RIS)Exportar EndNote (RIS)Exportar EndNote (RIS)
Título

Relative entropy in 2D quantum field theory, finite-size corrections, and irreversibility of the renormalization group

Autor Gaite, José
Palabras clave [PACS] Critical point phenomena
[PACS] Renormalization
[PACS] Field theories in dimensions other than four
Fecha de publicación 1998
EditorAmerican Physical Society
Citación Physical Review Letters 81: 3587- 3590 (1998)
ResumenThe relative entropy in two-dimensional field theory is studied for its application as an irreversible quantity under the renormalization group, relying on a general monotonicity theorem for that quantity previously established. In the cylinder geometry, interpreted as finite-temperature field theory, one can define from the relative entropy a monotonie quantity similar to Zamolodchikov's c function. On the other hand, the one-dimensional quantum thermodynamic entropy also leads to a monotonie quantity, with different properties. The relation of thermodynamic quantities with the complex components of the stress tensor is also established and hence the entropie c theorems are proposed as analogs of Zamolodchikov's c theorem for the cylinder geometry. © 1998 The American Physical Society
URI http://hdl.handle.net/10261/100743
DOI10.1103/PhysRevLett.81.3587
Identificadoresdoi: 10.1103/PhysRevLett.81.3587
issn: 0031-9007
Aparece en las colecciones: (CFMAC-IFF) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
JGaite.pdf136,96 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 



NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.