English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/100214
Share/Impact:
Statistics
logo share SHARE   Add this article to your Mendeley library MendeleyBASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Title

Visualización y análisis de la estructura de la base de datos Scopus

Other TitlesVisualization and analysis of the Scopus database structure
AuthorsGómez-Núñez, Antonio Jesús ; Vargas-Quesada, Benjamín; Muñoz-Écija, Teresa; Moya Anegón, Félix de
KeywordsClasificación
Visualización de información
Clustering
Classification
Information Visualization
Clustering
Issue DateNov-2013
PublisherInternational Society for Knowledge Organization
CitationXI Congreso ISKO España (2013)
I Congresso ISKO Espanha e Portugal (2013)
Abstract[ES] Introducción: La visualización de grandes redes de citación extraídas de bases de datos multidisciplinares como Web of Knowledge y Scopus es un tema de investigación recurrente en la investigación generada dentro de las ciencias de la información. La visualización de los elementos de la red y su agrupamiento en clústeres temáticos permite mapear la estructura de la investigación y la interrelación entre sus disciplinas, equiparables a los clústeres temáticos detectados. Objetivos: Se pretende representar la estructura de Scopus en base a la extensa red de citación establecida entre las numerosas revistas Scopus incluidas en la plataforma Scimago Journal & Country Rank (SJR), que en nuestro estudio ascienden a 18891. Mediante técnicas de clustering y visualización, se procederá a la reclasificación de las revistas. Metodología: En base a la citación de trabajos, se obtuvieron listas de adyacencia agregadas a nivel de revistas para la citación, co-citación y coupling. Estas listas muestran parejas de revistas del SJR relacionadas mediante un valor numérico que expresa la fuerza de su relación. Las tres listas fueron integradas en una nueva resultante de su suma, y sus valores fueron normalizados mediante la geo-similaridad. Por último, se ejecutó el algoritmo de clustering de VOSviewer. Los clústers de revistas obtenidos se etiquetaron con las categorías originales del SJR junto con las palabras significativas más repetidas en los títulos. Resultados y Discusión: El mapa resultante refleja la estructura de Scopus en función de un conjunto de categorías que representan el contenido temático de las revistas científicas incluidas en la base de datos. La reducción del conjunto de categorías en relación con el número inicial del SJR, así como el elevado número de cambios en la clasificación de las revistas sugiere un refinamiento y una optimización de la clasificación original. Conclusiones: El cienciograma presentado constituye una representación fiable y precisa de la estructura de la investigación basada en revistas científicas, puesto que se fundamenta en la opinión de los expertos, reflejada por medio de sus citas.
[EN] Introduction: Visualization of big citation networks extracted from multidisciplinary databases as Web of Knowledge and Scopus is a recurrent topic in Library and Information Science research. Visualization and clustering of network items enable to map science and research structure on the basis of thematic clusters detected as well as their relations. Objectives: We pretend to map Scopus database structure based on the extensive citation network derived from the full set of Scopus journals included in Scimago Journal & Country Rank (SJR) platform, which rise to 18891. We will re-classify the journals analysed using visualization and clustering techniques. Method: Working from citation of papers we constructed three journal adjacency lists covering citation-based measures, namely, direct citation, co-citation and bibliographic coupling. These lists are showing journal couples related through a numeric value which express the strength of the relation. Then, the three lists were combined in a new one resulting from summing up their values which were later normalized through geosimilarity measure. Finally, VOSViewer clustering algorithm was executed and journal clusters obtained were labelled using original SJR category tags together with the most repeated significant words from journal titles. Results and Discussion: The resulting map reflects the Scopus structure through a set of categories that represents thematic content of scientific journals included in the database. The reduction of categories as well as the high number of shifts in journal classification originated from our method suggests a refinement and optimization of SJR journal original classification. Conclusiones: The sciencitogram displayed arise like a reliable and accurate picture of science and research structure based on scientific journals, since it is built upon expert opinions, revealed by means of their citation patterns.
DescriptionPonencia presentada en el I Congresso ISKO Espanha e Portugal/XI Congreso ISKO España, "Informação e/ou Conhecimento: as duas faces de Jano", celebrado en Oporto del 7 al 9 de noviembre de 2013.
URIhttp://hdl.handle.net/10261/100214
Appears in Collections:(CCHS-IPP) Comunicaciones congresos
Files in This Item:
File Description SizeFormat 
visualizacion_estructura_scopus_Gomez.pdf664,87 kBAdobe PDFThumbnail
View/Open
Show full item record
Review this work
 


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.