English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/100051
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Title

Immobilization and biochemical properties of a β-xylosidase activated by glucose/xylose from Aspergillus niger USP-67 with transxylosylation activity

AuthorsPessela, Benevides C. ; Guisán, José Manuel ; Mateo González, César ; Polizeli, Maria de Lourdes T. M.
KeywordsAspergillus niger
Transxylosylation
Purification
Immobilization
β-Xylosidase
Issue Date2013
PublisherElsevier
CitationJournal of Molecular Catalysis B: Enzymatic 89: 93-101 (2013)
Abstractβ-Xylosidases have important applications in many biotechnological processes. In this context, the aim of this work was the purification, immobilization and characterization of a β-xylosidase produced by a new isolate of Aspergillus niger USP-67. β-Xylosidase was produced on static conditions in liquid Benassi medium supplemented with xylan birchwood, initial pH 3.0, for 6 days, at 30 °C. The enzyme was purified on DEAE-Sepharose followed of Superdex™ 200, and the molecular mass of the β-xylosidase was estimated to be 100 kDa, with 90% similarly to the β-xylosidase xlnD from A. niger (gi 146230215 accession), using MS sequencing. The enzyme was immobilized on DEAE-Sepharose, Polyethyleneimine (PEI)-Sepharose, Q-Sepharose, CM-Sepharose, Sulphopropil-Sepharose and MANAE-agarose, but the best result was obtained with PEI-Sepharose, which presented 94% of immobilization yield. Moreover, this derivative was more thermal stable than the soluble enzyme and other supports, which presented a half-life of about 50 min, at 65 °C. The enzyme immobilized on PEI-Sepharose had an optimum pH more acidic (around 4.5) than the purified enzyme (pH 5.5). Metal ions inhibited the soluble enzyme activity more than the immobilized form; however, Zn2+ increased the activity of the immobilized enzyme in 29%. The specific activity of the immobilized enzyme corresponded to 98.15 U/mg, but the soluble enzyme was 77.96 U/mg. Furthermore, the KM and Kcat values for the purified enzyme with p-nitrophenyl-xylopyranoside as substrate were 0.654 mM and 58.87 s-1 and for the immobilized enzyme the values were 0.587 mM and 88.95 s-1, respectively. The purified enzyme efficiently hydrolyzed xylooligosaccharides until xylose, but other xylooligosaccharides (X2-X6) were formed, suggesting transxylosylation action. The immobilized β-xylosidase of A. niger was not inhibited by xylose (100 mM) and glucose (200 mM), what confers to this enzyme a potential application in biotechnological processes. © 2012 Elsevier B.V. All rights reserved.
URIhttp://hdl.handle.net/10261/100051
DOI10.1016/j.molcatb.2012.12.010
Identifiersdoi: 10.1016/j.molcatb.2012.12.010
issn: 1381-1177
e-issn: 1873-3158
Appears in Collections:(ICP) Artículos
(CIAL) Artículos
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf15,38 kBAdobe PDFThumbnail
View/Open
Show full item record
 

Related articles:


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.