Título,Autor,palabras clave,Fecha publicación,Editor,citación,Resumen,url,doi,issn,isbn,tipología "The hydration structure of Cu2+: more tetrahedral than octahedral?","Bowron, Daniel T.; Boada, R.; Freeman, Adam; Hayama, Shu; Díaz-Moreno, Sofía; Amboage, Mónica","","2013","Royal Society of Chemistry (Great Britain)","RSC Advances 3(39): 17803-17812 (2013)","A comprehensive multi-technique approach has been used to address the controversial question of the preferred geometric form of the Cu2+ aqua-ion hydration shell. A combination of H/D isotopic substitution neutron scattering and X-ray scattering has been used to refine atomistic models of 0.5 m and 2.0 m solutions of Cu(ClO4)2, that have also been constrained to simultaneously reproduce detailed local structure information about the cation environment obtained by X-ray Absorption spectroscopy. The adoption of the Empirical Potential Structure Refinement (EPSR) technique as a single unified analytical framework minimises the chances for biasing the result in favour of a specific pre-conceived outcome. The results are consistent with an average coordination for each Cu2+ ion of 4.5 ± 0.6 water molecules that matches the more recent picture of five-fold coordination in a 2.0 m solution, but interestingly this combined study highlights that the preferred local geometry of the ion sites is found to have a mixed character of tetrahedral, trigonal bipyramidal and octahedral components. A further point to note is that this new model adds support to a largely ignored result in the literature relating to the linear electric field effect induced g-shifts observed in the electron paramagnetic resonance spectra of glassy Cu 2+ complexes (Peisach and Mims, Chem. Phys. Lett., 1976, 37, 307-310) that first highlighted the importance of tetrahedral distortions in the cation's hydration shell structure. This journal is © The Royal Society of Chemistry.","http://hdl.handle.net/10261/89576","10.1039/C3RA42400F","","","Artículo"