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Abstract 

Two graphene materials, TRGO-1 and TRGO-2, prepared by the thermal 

exfoliation/reduction at 1000ºC of two graphite oxides with different characteristics, are 

investigated as positive electrodes in a Vanadium Redox Flow Battery (VRFB). A detailed 

study of their electrochemical response towards the [VO2
+]/[VO2+] redox system is carried out 

through cyclic voltammetry, electrochemical impedance spectroscopy and charge/discharge 

experiments. As a consequence of the differences in the structure of the parent graphite 

oxides, TRGO-1 and TRGO-2 exhibit different structural and physicochemical properties 

resulting in significantly different electrochemical performances towards the vanadium redox 

reactions. TRGO-1 exhibits a markedly enhanced electrochemical activity (higher peak 

current densities and lower overpotentials) and a better kinetic reversibility towards the 

oxidation/reduction vanadium processes than TRGO-2. Furthermore, charge/discharge tests 

performed on two VRB single cells, the only differing component being the positive 

electrode, present higher coulombic, voltage and energy efficiency values in that battery 

containing the TRGO-1 electrode. The better results achieved with this sample are attributed 

to the higher degree of restoration of the 2D graphitic structure, and to the consequently 

higher electrical conductivity which increases the heterogeneous electron transfer rate. 

Moreover, residual hydroxyl groups present may act as active reaction sites and contribute to 

enhance its electrochemical response.  
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1. Introduction 

New sources of renewable energy have been developed in recent years in an attempt to 

achieve sustainable energy production. Although they offer clean energy, their intermittent 

nature in terms of power generation/power demand makes it necessary to storage the energy. 

There is therefore great interest amongst the scientific community to develop electrochemical 

energy storage systems [1]. 

Vanadium Redox Flow Batteries (VRFBs) have attracted increasing interest as large-scale 

energy storage devices because they offer attractive features such as a long life, a flexible 

design, a high energy efficiency and a low maintenance cost [2]. Unlike other batteries, where 

the energy is stored in the electrodes, VRFBs store this energy through the redox reactions of 

the electroactive species contained in two separate solutions [3].  Thus, ensuring the inertness 

of the electrodes, they offer the possibility of acting separately on the energy capacity and 

output power, facilitating their scale-up. Moreover, the use of the same metal in both half-

cells ([VO2
+]/ [VO2+] in the positive electrolyte and V3+/V2+ in the negative one), eliminates 

the problem of cross-contamination, the main cause of self-discharge in other redox flow 

batteries [4]. 

Although the electrodes are not direct storage elements, they have a key role to play in 

VRFBs by providing sites for the electrochemical reactions necessary for the proper operation 

of the battery. Consequently, the selection of suitable electrode materials, with a high 

electrical conductivity, a high surface area, high mechanical strength, a good electrolyte 

stability and electrochemical activity [5], is of fundamental importance for obtaining a battery 

with an excellent performance. The poor kinetics and reversibility of commonly used   

graphite felts [6], carbon cloths [7] and carbon fibers [8] restrict their use as active electrodes. 
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This drawback, together with the tedious procedures required to improve their 

electrochemical performance [9, 10], makes it necessary to search for new electrode materials. 

Graphenes have emerged as promising active electrode materials in electrochemical devices, 

due to their unique properties i.e., a high electrical conductivity, a high surface-to-volume 

ratio, mechanical stability and widely applicable electrochemical activity [11]. Furthermore, 

the possibility to prepare bulk quantities of graphene materials through readily scalable 

chemical methods, like the graphite oxide route, has increased the interest of scientists in their 

possible use as electrodes in energy-efficient storage/generation systems such as 

supercapacitors [12], lithium-ion batteries [13] or fuel cells [14].  

The thermal exfoliation/reduction of graphite oxide (GO) has been widely investigated for the 

preparation of graphene [15, 16] due to its simplicity, sustainability and scalability. Moreover, 

this method offers the possibility of controlling the quality of the materials produced by 

taking into account the characteristics of parent graphite [17], the oxidation method used in 

the preparation of the graphite oxide [18] and the conditions employed for the thermal 

reduction of the graphite oxide to graphene [19]. The resulting materials can thus be tailored 

to exhibit different structures and functionalities and by implication different electrochemical 

properties [20]. 

In a previous paper [21] the authors investigated the suitability of graphene materials, 

prepared by the direct thermal exfoliation/reduction of a synthetic graphite-based GO at 

different temperatures, as positive electrodes in a VRFB and observed an excellent behavior 

in that obtained at 1000 °C. Furthermore, the authors have recently demonstrated the better 

performance of the materials prepared by the direct thermal exfoliation/reduction of graphite 

oxide (produced in a single step) compared to those obtained by the thermal reduction of 

graphene oxide (after exfoliation of the graphite oxide, in a two-step process).  

In the present study, we prepared two graphene materials, by the thermal exfoliation/reduction 

at 1000ºC of graphite oxides with different characteristics and investigated the influence of 
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their different structural and physico-chemical properties on the electrochemical performance 

of the electrodes. A detailed study of their response towards the [VO2
+]/[VO2+] redox system 

was carried out through cyclic voltammetry, electrochemical impedance spectroscopy and 

charge/discarge experiments. As the electrochemical kinetic limitation of VRFBs is in the 

positive side [22], an understanding of how the different structural and physico-chemical 

properties of the graphene materials influence their electrochemical performance is key to the 

development of more active positive electrodes and, consequently, more efficient batteries.  

 

2. Experimental 

2.1 Synthesis of graphene materials  

Two graphite oxides, GO-1 and GO-2, were obtained by the oxidative treatment of two 

synthetic graphites with different characteristics [23] using a modified Hummers method [24]. 

This method makes use of Hummers reagents combined with additional amounts of NaNO3 

and KMnO4. Concentrated H2SO4 (360 mL) was added to a mixture of the corresponding 

synthetic graphite (7.5 g) and NaNO3 (7.5 g), and the resulting mixture was cooled down to 0 

°C using an ice bath. KMnO4 (45 g) was added slowly in small doses to keep the reaction 

temperature below 20 °C. The as-prepared solutions were heated to 35 °C and stirred for 3 h. 

At this point 3 % of H2O2 (1.5 L) was slowly added, resulting in a pronounced exothermal 

effect up to 98 °C. The reaction mixtures were stirred for 30 min and then centrifuged (3700 

rpm for 30 min), the supernatants being decanted away. The remaining solid materials were 

washed with 600 mL of water and centrifuged again, this process being repeated until the pH 

was neutral. Both GO-1 and GO-2 were then thermally treated in a tubular furnace up to 1000 

ºC (5 ºC min-1) for 1 h, under a N2 flow of 100 mL min-1 to obtain the two graphene materials 

(TRGO-1 and TRGO-2, respectively). 
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2.2 Structural, chemical and physical characterization  

The morphology of the samples was studied by SEM (using a FEI model Quanta FEG 650 

instrument operating at 5 KV) and TEM (on a JEOL 2000 EX-II). Raman spectra were 

recorded, from 750 to 3500 cm-1, on a Renishaw 2000 Confocal Raman Microprobe 

(Rhenishaw Instruments, England) using a 514.5-nm argon ion laser. The apparent BET 

surface areas were determined by applying the BET equation to the nitrogen adsorption 

isotherms obtained at 77 K on a Micromeritics ASAP® 2420 instrument. The electrical 

conductivity of the samples was measured (at 20 MPa) using a modification of the four-probe 

method of Van der Pauw [25]. The atomic oxygen content on the surface  was determined by 

XPS analysis in a VG-Microtech Multilab 3000 spectrometer (SPECS, Germany) equipped 

with a hemispherical electron analyser and a MgKα (hυ = 1253.6 eV) X-ray source. The type 

of bonding and the functional groups present in the samples were estimated from the XPS C1s 

spectra. Therefore, curve fitting of the C1s spectra was performed using a Gaussian–

Lorentzian peak shape after performing a Shirley background correction [26]. The resulting 

spectra show the binding energy of the C=C (sp2) at 284.5 eV. The chemical shifts of +1.0 

and +2.1 eV were assigned to the C (sp3) hybridisation and C–OH functional groups, 

respectively [27].  

 

2.3 Electrochemical measurements 

Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) experiments 

were performed in a Swagelok® type three-electrode cell at room temperature. The cell 

consisted of samples of TRGO-1 or TRGO-2, as the working electrode, Hg/Hg2SO4 as the 

reference electrode and a platinum gauze acting as the counter electrode. Both working 

electrodes were disk-shaped with the same geometric area (0.5 cm2) and the same mass (25 

mg), consisting of 70 wt% of active material and 30 wt% of polyvinylidene fluoride (as 

binder). The electrodes were dried in a vacuum oven at 110 ºC overnight before each 
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experiment. All the potentials in this study are quoted with reference to Hg/Hg2SO4 (i.e., 0.65 

V vs. NHE). The positive electrolyte consisted of a solution of 0.5 M VOSO4 (Sigma Aldrich) 

in 1.0 M H2SO4 (VWR International). Electrochemical measurements were performed on a 

Biologic VMP Multichannel Potentiostat.  

In the CV experiments the potential sweeps always started from the open circuit potential 

(OCP), the initial scan direction being positive. The scan rate, vscan, was varied from 1 to50 

mVs-1. Repetitive voltammograms (25 scans) were recorded at each vscan to evaluate the long 

term stability of the electrode materials and to study the kinetics of the vanadium redox 

processes.  

EIS measurements were performed at a polarization potential of 0.4 V (vs Hg/Hg2SO4) and 

amplitude of 10 mV over a frequency range of 100 KHz to 500 mHz.  

 

2.4 Single cell test 

Two lab-scale static vanadium redox batteries (VRBs) were assembled, the only differing 

component being the positive electrode. Disk-shaped electrodes of TRGO-1 (in VRB-1) or 

TRGO-2 (in VRB-2) were placed in the positive half-cell. Likewise, in both cases, pieces of 

thermally treated graphite felt (TTGF), a standard electrode material in these types of 

batteries, acted as the negative electrodes. For the charge/discharge experiments, the active 

area of each electrode was 1 cm2. The two compartments of each cell were separated by a 

commercial membrane (Nafion® NRE-212) and gold disks were used as current collectors. 

The starting electrolytes for the positive and negative half-cells were solutions of 0.5 M 

VOSO4 / 1.0 M H2SO4 and 0.5 M VCl3 (Aldrich) / 1.0 M H2SO4 (each electrolyte volume 

being approximately 1 mL), respectively. Charge/discharge experiments were carried out in 

both VRBs, applying constant current densities of 10-50 mAcm-2. The upper and lower limit 

of the charge/discharge voltages was fixed at 1.5 V and 1.2 V, respectively. 
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3. Results and discussion 

3.1 Characterization of graphene materials 

The graphite oxides used as raw materials for the synthesis of the graphene materials had 

similar oxygen contents (C/O ratios of about 2) but different types and distributions of oxygen 

functional groups. GO-1 exhibited a larger proportion of epoxi groups (mainly located at the 

basal planes) while GO-2 contained predominantly hydroxyl and carboxyl groups (located at 

the edges of the sheets) [23]. After thermal reduction, the obtained samples, TRGO-1 and 

TRGO-2, showed a typical fluffy appearance [28], consisting of graphene-like sheets with a 

disordered stacking as can be seen from the SEM images (Figures 1(a) and a(b)), and 

displayed similar  BET surface areas (Table 1). Moreover, as observed by TEM (Figure 1(c) 

and (d)), the graphene sheets are corrugated in both samples, although TRGO-2 exhibits more 

wrinkles and folds. 

The high ID/IG ratios measured by Raman spectroscopy (Table 1) indicate that both materials 

present quite a high density of defects and, therefore, the average size of the restored sp2 

domains in the graphene sheets is relatively small [29].  However, the higher ID/IG value in 

TRGO-2 may cause their electrochemical behaviors to differ [20]. 

Additionally, differences in their chemical composition were observed.  The XPS analyses of 

the two graphene samples show that the effectiveness of the thermal treatment in removing 

the oxygen functional groups [30] is better in TRGO-1 than in TRGO-2, as shown by the C/O 

ratio measured (Table 1). Moreover,  an analysis of the C1s spectra, to calculate the functional 

groups of the samples, confirms the better recovery of the 2D graphitic structure in TRGO-1 

as evidenced by its higher C-sp2 content (78.3 % vs 73.2% for TRGO-2). This  explains its 

higher electrical conductivity (Table 1)  [31] which contributes to a better electrochemical 

performance when used as active electrode material . 
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Furthermore, both samples contain residual oxygen functional groups with binding energies in 

the region corresponding to C-OH (Table 1). According to previous studies such hydroxyl 

groups could act as active sites towards the vanadium redox reactions [32]. 

 

3.2 Electrochemical performance 

The electrochemical behavior of the two graphene samples as electrode materials in the 

positive half-cell of a VRFB was investigated by means of CV experiments (Figure 2). 

Taking into account the differences in the structural and physico-chemical properties of the 

materials, different electrochemical performances towards the vanadium redox reactions 

might be expected.  

As can be seen from Figure 2, the two graphene materials respond positively to the vanadium 

redox processes under study. This is evidenced by the development, in both voltammograms, 

of the anodic/cathodic peaks associated to the corresponding VO2+ oxidation and VO2
+ 

reduction reactions. However, there are significant differences in their electrochemical 

performance, as indicated by the shape of the curves and the electrochemical data obtained 

from them (Table 2). 

The peak current densities (jpa, jpc) measured on TRGO-2 are smaller than on TRGO-1, 

contrary to what might be expected considering the slightly higher BET surface area and 

greater amount of oxygen functional groups in TRGO-2 [33]. Furthermore, the peaks 

developed on the corresponding CV are asymmetrical. All these factors confirm the poorer 

electrochemical activity of TRGO-2 [34], probably due to its greater number of structural 

defects and lower electrical conductivity (Table 1). 

TRGO-1 displays a better electrochemical performance, since it exhibits not only higher jpa, 

jpc and lower peak potential values (Epa, Epc), but also a lower peak potential separation value 

(ΔEp). These good results are not only indicative of a better electrochemical activity, but also 

suggest an enhancement of the reversibility of the redox processes on this electrode.   
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Furthermore, the ΔEp measured on this electrode when the scan rate is increased to 20 mVs-1 

(Figure 2(b)) is much lower than that corresponding to TRGO-2 (where neither the anodic nor 

the cathodic peaks are well-developed) indicating a lower polarization in the TRGO-1 

electrode [35]. Its improved electrochemical performance could be attributed mainly to the 

less defective structure of the restored graphitic lattice (higher C-sp2 bond fraction). This 

would lead to a higher electrical conductivity in this graphene sample and an increased 

heterogeneous electron transfer rate [36]. The above mentioned residual C–OH groups also 

contribute to this enhanced electrochemical performance by acting as active sites towards the 

vanadium redox processes [32].These encouraging results are not only better than those 

previously reported for other graphene-related materials by other authors [37], but are also 

comparable to the best results obtained with  metal-modified graphite felt [38]. 

CVs at increasing scan rates (from 1 to 50 mVs-1) were recorded to investigate the kinetics of 

the vanadium redox processes on the TRGO-1 electrode (Figure 2(c)). A linear relationship 

between the anodic and cathodic peak currents and the square root of the scan rate was found 

(Figure S1, Supporting Information). This result demonstrates that the oxidation of VO2+ and 

the reduction of VO2
+ are mainly controlled by their diffusion from the electrolyte to the 

electrode surface. This agrees with the faster electron transfer rate observed on TRGO-1 [39]. 

In addition, repetitive CVs were recorded on this electrode (Figure 2(d)) without any 

significant change in the values of the main electrochemical parameters (peak current 

densities or potential values). This can be considered as the first tentative evidence of the 

long-term stability of this active electrode material, even after 125 cycles of potential 

variation.  

In order to investigate in depth the resistance of the graphene materials to the above 

mentioned electron transfer step, electrochemical impedance spectroscopy (EIS) 

measurements were carried out. Figure 3 displays the Nyquist plots obtained on both the 
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TRGO-1 and TRGO-2 electrodes, in a [VO2
+]/[VO2+] solution at 0.4 V  (according to the CV 

results shown in Figure 2). 

The radius of the semicircle developed in the high frequency range is related to the charge 

transfer resistance (RCT) involved in the VO2+ oxidation at the electrode/electrolyte interface 

[38]. This radius value is smaller for the TRGO-1 electrode, implying a faster electron 

transfer reaction and corroborating the CV results discussed previously. Additionally, the Z´ 

value at Z´´ = 0 Ω, including the ohmic resistance of the electrolyte, the working electrode 

and the contact resistance is also smaller for TRGO-1 (3 Ω vs ~ 4 Ω for TRGO-2 electrode). 

These results are mainly ascribed to the higher electrical conductivity of TRGO-1 (higher 

content in sp2-hibrydized C atoms) and confirm its better electrochemical performance as 

positive electrode in the VRFB. 

 

3.3 Performance of the VRB single cell  

Charge/discharge experiments, at constant current densities ranging from 10 to 50 mAcm-2, 

were carried out in the two assembled batteries. It is important to remark that the only 

component that distinguishes them is the positive electrode, the rest of the cell design being 

the same in both cases. Therefore, any changes in average coulombic (ηC), voltage (ηV) and 

energy (ηE) efficiency, calculated from these tests (Table 3), can only be ascribed to changes 

in the positive electrode [40]. 

The efficiencies of VRB-1 at all the current densities tested are higher than those of VRB-2. 

As a consequence of the better reversibility of the [VO2
+]/[VO2+] redox processes on the 

TRGO-1 electrode and the lower electrochemical polarization of this electrode (see CVs, 

Figure 2), the coulombic efficiency of  VRB-1 is clearly  improved [41]. Moreover, the lower 

polarization of the electrode during the charge/discharge steps could explain the slightly 

higher voltage efficiency obtained with this static battery [42].  



 11

In addition, the evolution of the charge/discharge performances of both VRBs when cycling, 

at 50 mAcm-2, is presented in Figure 4. It can be seen that the efficiencies of both VRBs 

remain stable with cycling (Figure 4(a)) although the values obtained for VRB-1 are 

consistently higher than those corresponding to VRB-2 and are comparable to previously 

reported values [32, 41] . This confirms the better performance of VRB-1, which is ascribed 

to the reported better electrochemical performance of TRGO-1 towards the [VO2
+]/[VO2+] 

redox reactions 

 

4. Conclusions 

The graphene materials TRGO-1 and TRGO-2, obtained by the thermal exfoliation/reduction 

at 1000ºC of graphite oxides with distinct characteristics, present different structural and 

physicochemical properties which result in different electrochemical performances towards 

the VO2+/VO2
+ redox reactions. TRGO-1 is shown to be the more suitable positive electrode 

in the VRFB, as it exhibits a markedly enhanced electrochemical activity (higher peak current 

densities and lower redox reactions overpotentials) and a better kinetic reversibility towards 

these oxidation/reduction vanadium processes than TRGO-2. Furthermore, when the TRGO-1 

electrode is tested by means of charge/discharge experiments in the positive side of a single 

cell, better coulombic, voltage and energy efficiency values are obtained. These encouraging 

results are mainly attributed to the better restoration of the 2D graphitic structure in this 

sample (as reflected by the higher C-sp2 content). Consequently, a higher electrical 

conductivity is achieved which increases the heterogeneous electron transfer rate. In addition, 

the residual C-OH groups present in TRGO-1 may act as active reaction sites and contribute 

to enhance the electrochemical response.  
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List of Tables 

Table 1. Characteristics of the graphene materials synthesized. 

BET RAMAN XPS Conductivity
SAMPLE 

S (m2g-1) ID/IG C/O Csp2 (%) Csp3 (%) COH (%) K (Scm-1) 

TRGO-1 185 1.18 15.20 78.3 17.2 4.5 0.63 

TRGO-2 215 1.31 9.70 73.2 20.8 6.0 0.56 

 

 

Table 2. Electrochemical data derived from the CVs recorded on TRGO-1 and TRGO-2 

electrodes. 

SAMPLE vscan (mVs-1) jpa (mAcm-2) jpc (mAcm-2) ΔEp (V) Ipa/Ipc 

1 24.37 21.17 0.101 1.15 

5 64.01 59.02 0.214 1.08 

10 96.22 89.10 0.305 1.08 

20 142.54 135.59 0.406 1.05 

TRGO-1 

50 208.74 212.72 0.610 0.98 

1 19.28 16.32 0.285 1.18 

5 52.48 50.01 0.411 1.05 TRGO-2 

10 74.95 70.77 0.557 1.06 
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Table 3. Efficiencies of the VRBs with graphene materials as positive electrodes. 

CELL TEST j (mAcm-2) ηC (%) ηE (%) ηV (%) 

10 50.00 47.80 95.60 

20 75.00 71.95 95.93 

30 83.33 77.97 93.56 

40 87.23 80.51 92.44 

VRB-1 

50 90.48 81.61 91.58 

10 46.50 44.24 95.14 

20 72.50 68.86 94.98 

30 81.36 76.07 93.51 

40 85.42 78.96 92.30 

VRB-2 

50 87.80 80.41 91.20 
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Figure Captions 

Figure 1. SEM images of: (a) TRGO-1 and (b) TRGO-2. TEM images of: (c) TRGO-1 and 

(d) TRGO-2. 

Figure 2.  CVs recorded in a VOSO4 0.5 M / H2SO4 1.0 M solution: (a) on TRGOs at 1 mVs-1 

(b) on TRGOs at 20 mVs-1 (c) on TRGO-1 at increasing scan rates, vscan (d) Repetitive CVs 

recorded on TRGO-1. 

Figure 3. Nyquist plots of the TRGO-1 and TRGO-2 electrodes in a VOSO4 0.5 M / H2SO4 

1.0 M solution at 0.4 V (vs Hg/Hg2SO4). 

Figure 4.  Performances of the static VRBs when cycling at 50 mAcm-2. 
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          Figure S1. Anodic and cathodic currents measured on the TRGO-1 electrode vs the 

square root of vscan 

 

                                                 
 
 


