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The tripartite motif protein TRIM5� restricts particular retrovirus infections by binding to the incoming capsid and inhibiting
the early stage of virus infection. The TRIM5� RING domain exhibits E3 ubiquitin ligase activity and assists the higher-order
association of TRIM5� dimers, which promotes capsid binding. We characterized a panel of RING domain mutants of the rhe-
sus monkey TRIM5� (TRIM5�rh) protein. The RING domain function that significantly contributed to retroviral restriction
depended upon the restricted virus. The E3 ubiquitin ligase activity of the RING domain contributes to the potency of HIV-1
restriction. Nonetheless, TRIM5�rh mutants without detectable E3 ubiquitin ligase activity still blocked reverse transcription
and inhibited HIV-1 infection at a moderate level. When TRIM5�rh capsid binding was weakened by substitution with a less effi-
cient B30.2/SPRY domain, the promotion of higher-order association by the RING domain was more important to HIV-1 re-
striction than its E3 ubiquitin ligase activity. For the restriction of N-tropic murine leukemia virus (N-MLV) and equine infec-
tious anemia virus (EIAV) infection, promotion of higher-order association represented the major contribution of the RING
domain. Thus, both identity of the target virus and the B30.2/SPRY domain-mediated affinity for the viral capsid determine the
relative contribution of the two known RING domain functions to TRIM5� restriction of retrovirus infection.

The replication of human immunodeficiency virus type 1
(HIV-1) is potently blocked in Old World monkeys at an early

postentry step, prior to reverse transcription (1, 2). In 2004,
TRIM5� was identified as the major host factor that mediates this
block (3). Since this discovery, the TRIM5 proteins of multiple
mammalian species have been characterized, and the range of re-
stricted viruses has expanded to include a variety of retroviruses (len-
tiviruses, a betaretrovirus, a gammaretrovirus, and spumaviruses)
(4–16). A TRIM5 variant, TRIMCyp, which arose as a result of retro-
transposition events involving TRIM5 and cyclophilin A, exhibits
distinct restriction activities and has been identified in New World
owl monkeys and some Old World macaque species (17–22). The
wide existence of restricting TRIM5 variants suggests that they are
part of a novel, widespread mechanism of innate immunity.

TRIM5 proteins block viral infection in a species-specific man-
ner. Rhesus monkey TRIM5� (TRIM5�rh) potently blocks infec-
tion by HIV-1, whereas human TRIM5� (TRIM5�hu) only mod-
estly restricts HIV-1 infection but potently blocks infection of
N-tropic murine leukemia virus (N-MLV) (3, 5, 8, 9, 15). The
mechanism of TRIM5-mediated restriction is still not completely
understood. Retroviral sensitivity is determined by viral capsid
proteins; TRIM5� has been shown to bind directly to in vitro-
assembled HIV-1 capsid-nucleocapsid (CA-NC) complexes,
which resemble authentic viral cores (23–25). Interactions be-
tween TRIM5 proteins and viral capsids promote the uncoating of
sensitive viruses, as the level of particulate capsids is decreased in
the cytosol of cells expressing a restricting TRIM5� protein (25,
26). Recent electron microscopic studies (27) demonstrated that
purified TRIM5� proteins spontaneously form a large hexagonal
lattice structure on the HIV-1 capsid, which is composed of
smaller CA hexameric units. This observation has led to the hy-
pothesis that a slight mismatch between the geometry of the
TRIM5�rh hexagonal lattice and that of the capsid could lead to

disassembly of the capsid (27). Some investigators have reported
that proteasome inhibitors relieve the TRIM5�-mediated block of
viral reverse transcription but not infection, implying a two-step
restriction mechanism that requires the proteasome (28, 29). Deg-
radation of TRIM5 proteins was also observed in the presence of
saturating levels of sensitive viruses, suggesting that the TRIM5�-
capsid complexes are targeted for degradation; however, changes
in capsid protein stability or accumulation of ubiquitinated
TRIM5� proteins were not observed upon HIV-1 infection (30).
Recognition of the retroviral capsid by TRIM5� has been shown
to promote innate immune signaling by catalyzing the synthesis of
unattached K63 ubiquitin chains (31).

TRIM5� is a member of the tripartite motif (TRIM) protein
family (32). TRIM proteins all contain a RING domain, one or
two B-box domains, and a coiled-coil domain. TRIM5�, in addi-
tion, contains a B30.2/SPRY domain at the C terminus (32, 33). The
B30.2/SPRY domain determines viral specificity and restriction po-
tency; sequence variations in this domain correlate with the ability
of TRIM5 to recognize different viral capsids (34–40). The coiled-
coil domain of TRIM5 is essential for dimerization (41). The
RING and B-box 2 domains cooperatively promote the higher-
order association of preformed TRIM5� dimers (42–44). Multi-
merization increases TRIM5� avidity for viral capsids, which po-
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tentiates antiviral restriction. In both in vivo and in vitro assays, the
TRIM5 RING domain has been shown to have E3 ubiquitin ligase
activity (23, 24, 45). The proposed involvement of the proteasome
in blocking reverse transcription and the observed degradation of
TRIM5 proteins upon infection of TRIM5-expressing cells with a
sensitive virus both suggest that the E3 ubiquitin ligase activity of
TRIM5 might play some role in restriction (28–30). However,
deletion or disruption of the RING domain of TRIM5�rh or
TRIM5�hu only partially decreased restriction of HIV-1 and N-
MLV infection, respectively, arguing against a necessary role of the
E3 ubiquitin ligase activity in the TRIM5�-mediated antiviral
effect (35, 46, 47). More recent data suggest that the contribution
of the TRIM5� RING domain to restriction depends on both the
host and the viruses (48). The E3 ubiquitin ligase activity of
TRIM5agm correlated strongly with the restriction of macaque
simian immunodeficiency virus (SIVmac) infection, blockade of
reverse transcription, and premature uncoating of the SIVmac cap-
sid (49). In light of these results, a reevaluation of the role of the
RING domain and its associated E3 ubiquitin ligase activity in
viral restriction is merited.

Although small, the TRIM5� RING domain is known to be
multifunctional. Changes in this domain might simultaneously
affect several properties of the protein, including the E3 ubiquitin

ligase activity, higher-order self-association, protein turnover,
and cellular localization (44, 46, 50). To understand the contribu-
tion of each RING-determined property to antiviral activity, and
whether different viruses are affected differently by these proper-
ties, we characterized comprehensively a panel of RING domain
mutants of TRIM5�rh. We analyzed the correlations between
these properties and the restriction of HIV-1, N-MLV, and equine
infectious anemia virus (EIAV) infection. Our results indicated that
the E3 ubiquitin ligase activity makes a modest contribution to the
restriction of HIV-1 by TRIM5�rh. However, when the TRIM5�rh

B30.2/SPRY domain was replaced by the TRIM5�hu B30.2/SPRY do-
main, which binds the HIV-1 capsid less efficiently, the ability to
support higher-order association represented the dominant contri-
bution of the RING domain to HIV-1 restriction. For TRIM5�rh

restriction of N-MLV and EIAV, RING-mediated higher-order asso-
ciation contributed to restriction, whereas E3 ubiquitin ligase exerted
little detectable impact on restriction. Thus, the antiviral potency of
TRIM5� toward different viruses is dictated by distinct properties of
the TRIM5 RING domain.

MATERIALS AND METHODS
Plasmid constructs and cell lines. All of the RING domain mutants were
constructed by QuikChange mutagenesis, using as a template a pLPCX

FIG 1 Expression and antiretroviral activity of TRIM5�rh RING domain mutants stably expressed in Cf2Th cells. (A) Steady-state expression levels of the
TRIM5�rh RING domain mutants were assessed by Western blotting with an anti-HA antibody (�-HA; Roche). All of the TRIM5�rh variants carry an HA tag at
the C terminus. The �-actin levels in the lysates are shown as an internal control. (B) Antiviral activities of TRIM5�rh RING domain mutants. Cf2Th cells
expressing the different TRIM5 variants, or control Cf2Th cells transduced with the empty pLPCX vector, were incubated with various amounts of recombinant
HIV-1, N-MLV, EIAV, and B-MLV viruses expressing GFP. Infected GFP-positive cells were counted by FACS. The experiments were repeated four times; shown
here are the results from one typical experiment.
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vector encoding C-terminal hemagglutinin (HA)-tagged wild-type
TRIM5�rh. In some cases, the sequences encoding the B30.2/SPRY do-
main from TRIM5�hu were substituted for the equivalent rhesus monkey
TRIM5 sequence in the above vector, as previously described (51). Stable
Cf2Th cell lines were established using the pLPCX vector-based retroviral
gene delivery system (Clontech) and selected in 5 �g/ml puromycin, as
previously described (52).

Infection of cells with viruses expressing GFP. Recombinant HIV-1,
N-MLV, B-tropic MLV (B-MLV), and EIAV viruses expressing green flu-
orescent protein (GFP) were made as previously described (3, 9, 12). Cells
were infected with various doses of GFP-expressing viruses, and the per-
centage of GFP-positive cells was counted 60 h after infection by fluores-
cence-activated cell sorting (FACS).

Assay for TRIM5� higher-order association. The association be-
tween dimers of TRIM5�rh RING domain mutants and the wild-type
TRIM5�rh was assessed using a previously described higher-order self-
association assay with some modifications (43, 44). In 6-well plates, 293T
cells were transiently transfected with the empty pLPCX vector or pLPCX
vectors encoding the HA-tagged TRIM5�rh RING domain mutants or
FLAG-tagged wild-type TRIM5�rh. Cell lysates were extracted 48 h after
transfection and were cleared of insoluble materials/aggregates by centrif-
ugation. Depending on the expression level of TRIM5� proteins, some
lysates were further diluted with lysates from 293T cells transfected with
the empty pLPCX vector. Lysates containing HA-tagged TRIM5�rh RING
domain mutants and lysates containing FLAG-tagged wild-type
TRIM5�rh were then mixed. Samples of the mixture were taken at this
point for analysis of the input TRIM5� protein level. Magnetic protein G
beads (7 �l; Invitrogen), prebound with 1 �l (�5 to 6 �g) of anti-FLAG
antibody (Sigma), were added to the lysate mixture and incubated on a
rocker overnight at 4°C. The beads were then washed four times with 1 ml
buffer (300 mM NaCl, 50 mM Tris-HCl, 1% NP-40) at 4°C for 10 min
before being boiled for 5 min in 2� SDS sample buffer (125 mM Tris-
HCl, 2% SDS, 16% glycerol, 3% �-mercaptoethanol, 0.01% bromophe-
nol blue) to release the immunoprecipitated proteins. The proteins were
analyzed by Western blotting, using the HA and FLAG epitopes for detec-
tion, as described previously (43, 44).

In vitro E3 ubiquitin ligase activity assay. The E3 ubiquitin ligase
activity of TRIM5� variants was measured using a previously described in
vitro self-ubiquitylation assay with minor modifications (49). Cf2Th cells
stably expressing the RING domain mutants were lysed in RIPA buffer (50
mM Tris-HCl [pH 7.4], 150 mM NaCl, 1% NP-40, 0.5% sodium deoxy-
cholate, 0.1% SDS, and protease inhibitor cocktail) supplemented with
0.5 mM dithiothreitol (DTT). After preclearing by centrifugation, the cell
lysates were mixed with magnetic protein G beads (7 �l; Invitrogen) pre-
bound with 5 �g of anti-HA antibody (Sigma) and incubated overnight at
4°C on a rocker. The beads were then washed 4 times with RIPA buffer
supplemented with 0.5 mM DTT and once with HEPES buffer (50 mM
HEPES, 200 mM NaCl, and 0.5 mM DTT). For the self-ubiquitylation
reaction, the beads were resuspended in HEPES buffer and mixed with 0.2
�M E1 enzyme, 1 �M E2 enzyme (UbcH5a), and 20 �M ubiquitin in the
presence and absence of an energy-regenerating system (5 mM Mg-ATP;
BostonBiochem). The reaction mixture was incubated at 37°C for 2 h.
TRIM5� proteins were then detected by Western blotting with an an-

TABLE 1 Phenotypes of TRIM5�rh RING domain variants

TRIM5�rh variant
Expression
levela

E3 ubiquitin ligase
activityb

Higher-order
associationc

HIV-1 capsid
bindingd

HIV-1 reverse
transcriptione

Infection by f:

HIV-1 N-MLV EIAV

Wild-type �� ���� ���� ���� �/� �/� �/� �/�
I17A/L19A ��� � � �� ��� �� ���� ��
E20A/L21A ���� �� � �� �� � ���� ��
A41Q/N42A � ���� ���� ��� �/� �/� �� �/�
M47A/L48A � ���� ���� ��� �/� �/� �/� �/�
V58A/R60A ��� � �� � �� � ���� �
L19A �� � ��� ���� � �� ���� �
E20A ��� �� �� �� �/� �/� ��� �/�
L21A ���� ��� � � �/� �/� ���� �
V58A ��� � �� � �/� �/� ��� �/�
R60A �� � ���� ���� �/� � � �/�
a The expression level of each TRIM5� variant was determined as described in Materials and Methods. The level relative to that of the wild-type TRIM5�rh protein is reported as
follows: ����, more than 300% of the wild-type TRIM5�rh level; ���, 150 to 300%; ��, 100 to 150%; �, 40 to 55%.
b The ubiquitin ligase activity of each TRIM5� variant was determined as described in Materials and Methods. The E3 ubiquitin ligase activity relative to that of the wild-type
TRIM5�rh protein is reported as follows: ����, 100 to 101% of the wild-type TRIM5�rh E3 ligase activity; ���, 60 to 70%; ��, 40 to 50%; �, 5 to 15%; �, not detected.
c The higher-order association of each TRIM5� variant with the wild-type TRIM5�rh protein was determined as described in Materials and Methods. The association efficiency
relative to the self-association of wild-type TRIM5�rh protein is reported as follows: ����, �100% of the higher-order self-association of the wild-type TRIM5�rh protein;
���, 80 to 95%; ��, 10 to 30%; �, 0 to 10%; �, not detected.
d Binding of each TRIM5� variant to HIV-1 CA-NC complexes was measured as described in Materials and Methods. The binding relative to that of the wild-type TRIM5�rh

protein is reported as follows: ����, 95 to 105% of the binding observed for the wild-type TRIM5�rh protein; ���, 60 to 75%; ��, 20 to 50%; �, 10 to 25%.
e Late HIV-1 reverse transcripts were measured as described in Materials and Methods. The reverse transcript level relative to that observed following HIV-1 infection of cells
transduced with the empty LPCX vector is reported as follows: ����, 100% of the late reverse transcript level in control pLPCX-transduced cells; ���, 70 to 80%; ��, 40 to
50%; �, 15 to 25%; �/�, 0 to 5%.
f The level of infection by the indicated viruses in cells expressing the TRIM5�rh variants was determined as described in Materials and Methods. The level of infection, relative to
the level observed in cells transduced with the empty pLPCX vector, is reported as follows: ����, 95 to 100%; ���, 75 to 95%; ��, 55 to 75%; �, 35 to 55%; �/�, 10 to 35%.

TABLE 2 P values for Spearman rank-order correlations between
antiretroviral activities and other properties of TRIM5�rh variants

TRIM5� restriction

P valuea

HIV-1 N-MLV EIAV

E3 ubiquitin ligase activity (�) 0.0191 (�) 0.1893 (�) 0.2460
Higher-order association (�) 0.6495 (�) 0.0021 (�) 0.0165
CA-NC binding (�) 0.7128
HIV-1 late RTs (�) 0.0097
Half-life (�) 0.7932 (�) 0.0017 (�) 0.0553
Expression level (�) 0.8308 (�) 0.0084 (�) 0.1604
Detergent insolubility (�) 0.0073 (�) 0.0317 (�) 0.0062
a The P values from the Spearman rank-order correlation analysis on each pair of
TRIM5�rh properties/activities are listed. A positive sign indicates a direct relationship,
and a negative sign indicates an inverse relationship. Correlations with P values less
than 0.02 were considered significant and are highlighted in bold.
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ti-HA antibody (Roche). For densitometric analysis, films were scanned
digitally, and the relative intensities of protein bands were quantitated by
using the ImageJ 1.42q software (NIH). The E3 ubiquitin ligase activity is
expressed as the amount of the unmodified TRIM5� protein after the
ubiquitylation reaction subtracted from the amount of input TRIM5�
protein, divided by the amount of the input TRIM5� protein. For mu-
tants that exhibited no E3 ubiquitin ligase activity, film quantitation oc-
casionally yielded small negative values; in those cases, the E3 ubiquitin
ligase activities were assigned a value of zero.

Detergent solubility assay. To assess the solubility of TRIM5�rh vari-
ants in detergent buffers, 4 � 105 stable Cf2Th cells expressing TRIM5�
RING domain mutants were seeded into 6-well plates. Cells were lysed the
following day with 1 ml of lysis buffer (1% NP-40 –phosphate-buffered
saline–protease inhibitor cocktail). The detergent-soluble and -insoluble
fractions represented the supernatant and the pellet obtained by centri-
fuging crude cell lysates at 13,200 rpm for 10 min. The pellet was dissolved
in SDS sample buffer, and the amounts of proteins in both the superna-
tant and the pellet were examined by Western blotting with an anti-HA
antibody (Roche). Detergent insolubility was defined as the ratio of insol-
uble protein to soluble protein, both normalized against the �-actin level
in the respective fractions.

Subcellular localization using immunofluorescence confocal mi-
croscopy. The subcellular localization of TRIM5� mutants was detected
with a rat anti-HA 3F10 antibody (1:100; Roche) followed by a goat anti-
rat immunoglobulin G conjugated with Alexa-488 (1:200; Molecular
Probes) and observed under a Zeiss LSM510 META confocal microscope,
as previously described (43).

Measurement of HIV-1 late reverse transcription products. One day
prior to infection, 4 � 105 stable TRIM5�-expressing Cf2Th cells were
seeded into 6-well plates in triplicate. HIV-1–GFP viruses were prepared

as described above and were treated with 44 U/ml of Turbo DNase I
(Ambion) at 37°C for 1 h. The viruses were then added to cells at a dose
that would infect 50 to 80% of cells expressing the empty pLPCX vector.
Sixteen hours after infection, cells were harvested and total DNA was
extracted with the DNeasy kit (Qiagen). One hundred nanograms of total
DNA was used as a template for quantitative real-time PCRs under pre-
viously described conditions (53). Duplicate measurements were per-
formed for each of the triplicate samples.

Statistics. Potential relationships between variables were examined by
Spearman rank-order correlation analysis (Vassarstats.net). To account
for multiple comparisons, only correlations with P values of �0.02 were
considered significant.

RESULTS
Antiretroviral activities of TRIM5�rh RING domain mutants.
The solution structure of the human TRIM5� RING domain has
been solved (doi:10.2210/pdb2ecv/pdb). Like other RING do-
mains, the TRIM5�hu RING coordinates two zinc ions and adopts
a ��� fold (54). Based on homology with some well-characterized
RING domains, several residues in the TRIM5�rh RING domain
(I17, L19, V58, R60, A41, and N42) were predicted to be at or near
the putative E2 binding site (54). To study the contribution of
these residues to the E3 ubiquitin ligase activity of TRIM5� and
retrovirus restriction, we changed these residues to alanines (A)
(except A41, which was changed to glutamine [Q]), either indi-
vidually or in combination.

Previously, we showed that the RING domain contributes to
the higher-order self-association of TRIM5� (44). A closely re-

FIG 2 Relationship between E3 ubiquitin ligase activity of TRIM5�rh RING domain mutants and antiretroviral activity. (A) TRIM5�rh RING domain mutants
immunoprecipitated from the lysates of stably expressing cell lines were used in an in vitro E3 ubiquitin ligase activity assay in the absence and presence of ATP.
After 2 h of incubation at 37°C, the reaction mixture was examined by Western blotting with an anti-HA antibody (�-HA), which recognizes both unmodified
and ubiquitylated TRIM5 proteins. The far right panel shows results of a longer exposure of the Western blot film from an independent experiment, where the
ubiquitylated forms of mutant E20A are more visible. (B) Correlations between the E3 ubiquitin ligase activity of TRIM5�rh RING domain variants and their
restriction activities were assessed by Spearman rank-order correlation analysis. The plots show the relationship between viral infectivity in the TRIM5�rh-
expressing cells and the percent conversion of TRIM5� proteins to ubiquitylated forms in the in vitro E3 ubiquitin ligase assay. The rs and P values are shown on
the plots.
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lated chimeric protein, TRIM5�rh-21R, which is a TRIM5�rh pro-
tein with a human TRIM21 RING domain, exhibits much less
efficient higher-order self-association than wild-type TRIM5�rh

(unpublished results). By comparing the RING domains of hu-
man TRIM21 and TRIM5�rh, several residues (E20, L21, M47,
and L48) were identified as potential contributors to higher-order
self-association. These residues were also changed to alanines, ei-
ther individually or in combination, to investigate the contribu-
tion of RING domain-mediated higher-order self-association to
restriction.

Cf2Th cell lines stably expressing these double or single
TRIM5�rh mutants were established, and the steady-state level of
TRIM5� expression was examined (Fig. 1A). These cells were then
challenged with recombinant HIV-1, N-MLV, EIAV, or B-MLV
viruses expressing GFP (Fig. 1B). Some mutants, particularly
E20A/L21A and L21A, were expressed at much higher levels than
others, but higher expression levels did not significantly correlate
with restriction potency (Tables 1 and 2). For example, the mutant
M47A/L48A, although expressed at a lower level, restricted
HIV-1, N-MLV, and EIAV infection as efficiently as wild-type
TRIM5�rh. Most of the RING domain mutants potently restricted
HIV-1 infection, with a few mutants exhibiting very modest re-
ductions in their anti-HIV-1 activity. All of the mutants potently
restricted infection by EIAV. In contrast to the two lentiviruses,
the gammaretrovirus N-MLV was able to overcome the block by
many of the RING domain mutants. For example, mutant L21A
blocked HIV-1 infection even more potently than wild-type

TRIM5�rh, yet exerted little effect on N-MLV infection (Fig. 1B);
this observation suggests that the TRIM5�rh RING domain may
contribute to HIV-1 and N-MLV restriction by different mecha-
nisms. Neither wild-type TRIM5�rh nor any of these mutants was
able to block infection by B-MLV (Fig. 1B).

E3 ubiquitin ligase activity of TRIM5�rh RING domain mu-
tants. The E3 ubiquitin ligase activity of the TRIM5�rh RING
domain mutants was examined in an in vitro assay, as previously
described (49). The wild-type TRIM5�rh efficiently formed poly-
ubiquitin ladders upon addition of ATP (Fig. 2A). Two mutants,
A41Q/N42A and M47A/L48A, self-ubiquitylated as efficiently as
the wild-type TRIM5�rh protein. All other mutants exhibited
some degree of defect in their E3 ubiquitin ligase activity. The
L19A, I17A/L19A, V58A, R60A, and V58/R60A mutants exhibited
no detectable E3 ubiquitin ligase activity, consistent with the pre-
diction that the E2 binding site is disrupted by these changes (54).
The relationship between the E3 ubiquitin ligase activity of the
TRIM5�rh mutants and their ability to restrict retroviral infec-
tion was investigated by a Spearman rank-order correlation anal-
ysis (Vassarstats.net). The viral infection results from four inde-
pendent experiments were averaged and used in the analysis. The
E3 ubiquitin ligase activity was quantified as the percentage of
proteins ubiquitylated after the in vitro reaction. The relationships
between the E3 ubiquitin ligase activity and the restriction activi-
ties are shown in Fig. 2B. A positive correlation was observed
between the E3 ubiquitin ligase activity and the ability of
TRIM5�rh to block HIV-1 infection, even though mutant

FIG 3 Relationship between higher-order association of TRIM5�rh RING domain variants and antiretroviral activity. (A) Coprecipitation of HA-tagged
TRIM5�rh RING domain mutants with FLAG-tagged TRIM5�rh dimers. 293T cells were transiently transfected with the empty pLPCX vector or vectors
expressing the indicated TRIM5�rh variant. The inputs of the mutants were adjusted with lysates from pLPCX-transfected 293T cells so that the concentrations
of TRIM5 proteins were more comparable. Cell lysates from separate transfections were mixed as indicated and immunoprecipitated with an anti-FLAG antibody
(�-FLAG). The amounts of HA- and FLAG-tagged proteins in the lysates (input) and immunoprecipitates (pellet) were analyzed by Western blotting with
horseradish peroxidase-conjugated anti-HA and anti-FLAG antibodies. (B) Relationships between higher-order association of TRIM5�rh RING domain mu-
tants and their restriction activities were assessed by Spearman rank-order correlation analysis. The plots show the relationship between higher-order association
and the infectivity of the indicated virus in cells expressing a TRIM5�rh variant. Higher-order association is defined as the amount of the HA-tagged TRIM5�
variant that was coprecipitated, normalized against the input of the TRIM5� variant and the amount of immunoprecipitated FLAG-tagged wild-type TRIM5�rh

protein. The rs and P values are shown on the plots.
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TRIM5�rh proteins with poor E3 ubiquitin ligase activity (e.g.,
V58A) still restricted HIV-1 quite efficiently. No correlation with
the E3 ubiquitin ligase activity was observed for the TRIM5�rh-
mediated restriction of either N-MLV or EIAV infection (Fig. 2B).

Higher-order association of TRIM5�rh RING domain mu-
tants. We previously showed that higher-order self-association of
TRIM5� protein dimers promotes cooperative binding to the
HIV-1 capsid (42, 43). Electron microscopy studies have demon-
strated that purified TRIM5� proteins spontaneously form a
hexagonal lattice structure, which is promoted by interaction
with the assembled HIV-1 capsid (27). The hexagonal lattice
structure likely forms as a result of TRIM5� higher-order self-
association, allowing “pattern recognition” of viral capsids (27).
The TRIM5�rh mutants dimerized efficiently, compared with the
wild-type TRIM5�rh protein; the L19A and A41Q/N42A mutants
exhibited slight decreases in dimerization, which may be related to
their lower levels of expression (data not shown). As the RING
domain contributes to TRIM5� higher-order self-association, we
examined whether the RING domain mutants associated with
wild-type TRIM5�rh dimers to form higher-order structures, us-
ing a previously described coimmunoprecipitation assay with dif-
ferently tagged proteins (see Materials and Methods) (43, 44).

To achieve equivalent input levels of the TRIM5�rh variants,
some of the cell lysates were diluted with the lysates from 293T
cells transiently transfected with the empty pLPCX vector. Three
of the mutants (M47A/L48A, A41Q/N42A, and R60A) associated
with TRIM5�rh dimers as efficiently as the wild-type TRIM5�
protein; all the other mutants demonstrated some degree of defect
in higher-order association (Fig. 3A). No significant correlation
was observed between higher-order association and the restriction
of HIV-1 infection for this panel of mutants (Fig. 3B). In contrast,
there was a very strong correlation between TRIM5�rh higher-
order association and the restriction of N-MLV infection. A
weaker correlation was also observed between higher-order asso-
ciation and the restriction of EIAV infection. Thus, the contribu-
tion of the TRIM5�rh RING domain to higher-order association is
apparently more important for N-MLV and EIAV restriction than
for HIV-1 restriction.

Higher-order association and capsid binding. The binding of
the RING domain mutants to the HIV-1 capsid was examined by
using a previously described assay in which TRIM5� cosediments
with in vitro-assembled HIV-1 CA-NC complexes (25, 55)
(Fig. 4A and B). We observed a strong correlation between capsid
binding ability and higher-order association efficiency for these
mutants, confirming that RING-dependent higher-order associa-
tion can enhance capsid-binding avidity (Fig. 4C). For this panel
of RING domain mutants, we did not observe a correlation be-
tween HIV-1 restriction and the ability of the mutant TRIM5�rh

proteins to associate with HIV-1 CA-NC complexes (Table 2). We
hypothesized that because these mutants all have a wild-type
B30.2/SPRY domain from TRIM5�rh, which efficiently binds the
HIV-1 capsid, the contribution of RING-mediated higher-order
self-association to HIV-1 restriction is less critical. Moreover, be-
cause the RING domain mutants defective for higher-order asso-
ciation tend to be expressed at higher levels in cells (Fig. 1A and
Table 1), higher concentrations of these mutants may compensate
for lower capsid avidity.

We asked whether the requirements of retroviral restriction for
specific TRIM5� RING functions depended on capsid binding
affinity, which is primarily dictated by the B30.2/SPRY domain

(34–40). To that end, the B30.2/SPRY domain of TRIM5�hu was
substituted for the B30.2/SPRY domain of wild-type TRIM5�rh

and three RING domain mutants of TRIM5�rh. TRIM5�hu binds
the HIV-1 capsid and restricts HIV-1 infection less efficiently than
TRIM5�rh, but it restricts N-MLV infection more efficiently than
TRIM5�rh (3, 9, 25, 55); the TRIM5� B30.2/SPRY domain deter-
mines these phenotypes (35, 36, 39, 40, 51, 55, 56). Figure 5 shows
the effects of the TRIM5� variants on infection by HIV-1 and
N-MLV. The TRIM5� variants were expressed at comparable lev-
els, except for the highly expressed L21A and the L21A-huSPRY
mutants (Fig. 5A); the L21A-huSPRY mutant contains the L21A
change in a TRIM5�rh chimera with a TRIM5�hu B30.2/SPRY
domain. As expected, the huSPRY chimeras restricted HIV-1 in-
fection less efficiently than the TRIM5�rh variants. Of interest,
HIV-1 inhibition by the huSPRY variants correlated with higher-
order association (rs 	 0.8), and not with E3 ubiquitin ligase ac-
tivity (rs 	 0.4). Thus, when the interaction of the B30.2/SPRY
domain with the retroviral capsid is relatively weak, the impor-
tance of the higher-order association function of the RING do-
main to restriction increases.

FIG 4 Binding of TRIM5�rh RING domain variants to HIV-1 CA-NC com-
plexes. (A and B) Lysates from 293T cells transiently expressing the HA-tagged
TRIM5�rh variants were incubated with assembled HIV-1 CA-NC complexes,
which were pelleted through a sucrose cushion and analyzed as previously
described (25). To achieve equivalent input levels of TRIM5�rh protein, some
cell lysates were diluted with cell lysates from 293T cells transfected with the
empty vector pLPCX. For comparison purposes, the cell lysates containing
wild-type TRIM5�rh were diluted as indicated in panel B. �-HA, anti-HA
antibody. (C) The relationship between higher-order association and HIV-1
CA-NC binding was assessed by Spearman rank-order correlation analysis.
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The huSPRY chimeras all restricted N-MLV infection potently
(Fig. 5B). In this case, the restriction potency of the chimeras
correlated with higher-order association (rs 	 1), and not with E3
ubiquitin ligase activity (rs 	 0.2). Thus, promoting higher-order
association appears to be the predominant contribution of the
TRIM5� RING domain to N-MLV restriction, regardless of the
B30.2/SPRY contribution to capsid interaction.

Formation of HIV-1 late reverse transcripts. To examine how
the RING domain changes affect HIV-1 restriction by TRIM5�rh,
we studied HIV-1 late reverse transcript (RT) formation in cell
lines expressing TRIM5�rh RING domain mutants. HIV-1 late
RTs were measured 16 h after infection with HIV-1–GFP viruses
at a viral dose that would infect approximately 50 to 80% of the
cells transduced with the empty pLPCX vector. Most of the
TRIM5�rh mutants potently blocked RT formation, whereas a few
were less efficient in this regard (Fig. 6A). A good correlation was
observed between the level of HIV-1 infection and the late RT level
in cells (Fig. 6B). Of note, we did not identify any RING domain
changes that uncoupled inhibition of HIV-1 reverse transcription
and restriction of infection. The correlation between HIV-1 late
RT formation and the E3 ubiquitin ligase activity for these
TRIM5�rh mutants fell short of statistical significance (Fig. 6B).
Indeed, despite exhibiting no detectable E3 ubiquitin ligase activ-
ity in the in vitro assay, some mutants (e.g., V58A, R60A) potently
blocked HIV-1 late RT formation. Thus, restriction of HIV-1 in-
fection by this panel of TRIM5�rh RING mutants is closely linked
to disruption of reverse transcription.

The effect of protein turnover on antiviral activities and
other protein properties. As changes in the RING domain have
been reported to affect the turnover of TRIM5 proteins, we mea-
sured the half-lives of the RING domain mutants, as previously
described (50, 52). Some changes in the RING domain signifi-
cantly reduced the turnover of the TRIM5�rh protein; the stable,

steady-state expression level of these mutants correlated with their
respective half-life (Fig. 7 and Table 3). An inverse correlation was
observed between the half-life of the RING mutants and higher-
order association, as well as two other properties, HIV-1 CA-NC
binding and N-MLV restriction, which are linked to higher-order
association (Table 2 and 3).

Formation of detergent-insoluble aggregates in cells. By us-
ing a detergent solubility assay, we examined if the TRIM5�rh

RING domain mutants could be extracted with buffer contain-
ing 1% NP-40. The wild-type TRIM5�rh was largely soluble in
this buffer, and the majority of the protein partitioned into the
supernatant (Fig. 8). Some mutants were resistant to detergent
extraction, and a significant amount of the protein could be
detected in the detergent-insoluble pellet fraction (Fig. 8). The
tendency to form detergent-insoluble complexes was indepen-
dent of the expression level or half-life, as some mutants with a
high expression level (e.g., L21A) were still quite soluble
(Fig. 8). Immunofluorescence staining showed that mutants
with high detergent insolubility formed juxtanuclear inclusion
bodies that were reminiscent of aggresomes or cellular inclu-
sion bodies (Fig. 9) (57). The detergent insolubility index was
defined as the ratio of the insoluble TRIM5�rh proteins in the
pellet to the soluble proteins in the supernatant, both normal-
ized to the actin level in the corresponding fractions. The de-
tergent insolubility index inversely correlated with restriction
of HIV-1 and EIAV and exhibited a trend toward an inverse
correlation with N-MLV restriction (Table 2). Detergent insol-
ubility also negatively correlated with the E3 ubiquitin ligase
activities of these mutants. Detergent insolubility may reflect
suboptimal folding of the RING domain, with some associated
aggregation in expressing cells as well as functional impair-
ment.

FIG 5 Antiviral activities of RING domain mutants in the context of TRIM5�rh and the TRIM5�rh-huSPRY chimera. (A) The steady-state expression levels of
RING domain mutants in the context of TRIM5�rh and the TRIM5�rh-huSPRY chimera were assessed by Western blotting with an anti-HA antibody (�-HA;
Roche). All of the TRIM5� variants carry an HA tag at the C terminus. The �-actin levels in the lysates are shown as an internal control. (B) Cf2Th cells expressing
the indicated variants of TRIM5�rh or the TRIM5�rh-huSPRY chimera, or control cells transduced with the empty pLPCX vector, were incubated with various
amounts of recombinant HIV-1 (left panel) or N-MLV (right panel) expressing GFP. Infected GFP-positive cells were counted by FACS. The experiments were
performed two times with similar results. The results of a typical experiment are shown.
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DISCUSSION

In this study, we assayed multiple properties of a panel of
TRIM5�rh RING domain mutants, including two properties, E3
ubiquitin ligase activity and higher-order association, to which the
TRIM5� RING domain contributes. Our results revealed the re-
lationships among these properties and TRIM5�rh restriction of
infection of two lentiviruses, HIV-1 and EIAV, and a gammaret-
rovirus, N-MLV.

E3 ubiquitin ligase activity correlated with the potency of re-
striction of HIV-1 infection by TRIM5�rh RING mutants, consis-
tent with previously reported results (58). However, the E3 ubiq-
uitin ligase function of the RING domain affected HIV-1
restriction potency over a relatively narrow range. All the mutants
examined were able to restrict HIV-1 infection with at least mod-
erate potency. Moreover, some of the E3 ubiquitin ligase-defective
TRIM5�rh mutants (e.g., V58A, R60A) potently blocked HIV-1
reverse transcription. Thus, RING-mediated E3 ubiquitin ligase
activity, at least as measured in our in vitro autoubiquitylation
assay, does not appear to be absolutely essential for the early
blockade of HIV-1 infection. Lienlaf et al. also found that the
V58A and R60A TRIM5�rh mutants were defective for autoubi-

quitylation yet reduced HIV-1 reverse transcription by more than
10-fold (58). However, they reported only weak restriction of
HIV-1 infection by these mutants, a result that is unexpected in
light of the reverse transcription decrease and in contrast to the
significant HIV-1 restriction activity observed in our study. De-
spite these differences, both studies support a role for TRIM5�rh

ubiquitin ligase activity in HIV-1 infection.
Some caveats apply in extrapolating our results to reach con-

clusions about the role of RING-mediated E3 ubiquitin ligase ac-
tivity in TRIM5�rh function in vivo. The in vitro autoubiquityla-
tion assay is a sensitive and commonly used method to assess E3
ubiquitin ligase activity when the substrate is unknown (59), and
the E2 enzyme used in this study (UbcH5a) was selected by screen-
ing a battery of different E2 enzymes (49). Nonetheless, given that
an E3 ubiquitin ligase could potentially utilize numerous E2s in
vivo, changes in the TRIM5� RING domain might differentially
affect its interactions with a physiological E2 partner(s) (54, 60). A
second caveat is that the phenotype of E3 ubiquitin ligase-defec-
tive TRIM5� mutants may depend upon the level of TRIM5�
expression. Although our results are corroborated by the observa-
tion that RING-deleted TRIM5�rh mutants retain some HIV-1-

FIG 6 HIV-1 late reverse transcript formation in stable Cf2Th cell lines expressing TRIM5�rh RING domain mutants. (A) Cells were infected with DNase
I-treated HIV-1–GFP viruses at a dose that would infect 50 to 80% of the cell line transduced with the empty pLPCX vector. Total DNA was extracted from the
cells 16 h after infection, and 100 ng DNA was used to measure the copy number of HIV-1 late reverse transcripts using quantitative real-time PCR. (B)
Relationships between HIV-1 infection and late RT formation and between late RT formation and E3 ubiquitin ligase activity are plotted. The Spearman
rank-order correlation coefficients and P values are shown on the plots.
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restricting activity (35, 46, 47), infection inhibition assays are typ-
ically performed with cells expressing higher-than-physiologic
levels of mutant TRIM5� proteins. In natural target cells for
HIV-1 infection, where TRIM5� expression is lower, RING-me-
diated E3 ubiquitin ligase activity may assume greater importance.

The precise mechanism by which E3 ubiquitin ligase activity
contributes to the potency of HIV-1 restriction requires further
investigation. Notably, the RING function important for HIV-1
restriction potency differed in the context of TRIM5�rh, which
binds the HIV-1 capsid tightly, and the chimeric TRIM5�rh-
huSPRY protein, in which the replacement of the TRIM5�rh

B30.2/SPRY domain with that of human TRIM5� results in a
decreased affinity for the HIV-1 capsid. In the restriction of HIV-1
infection by TRIM5�rh-huSPRY, the contribution of the RING
domain to higher-order association superseded the contribution
of the RING domain to E3 ubiquitin ligase activity. Apparently, in
the context of the TRIM5�rh-huSPRY chimera, where the affinity
of the B30.2/SPRY domain for the HIV-1 capsid is low, the con-
tribution of higher-order association to capsid binding avidity
becomes more important for successful HIV-1 restriction. This
result is reminiscent of the effect of B30.2/SPRY-mediated capsid
binding affinity on the HIV-1 restriction phenotypes resulting
from changes in the TRIM5� B-box, which cooperates with the
RING domain to achieve higher-order self-association (43, 51).
Capsid binding affinity specified by the B30.2/SPRY domain also
influenced the consequences of RING domain changes on the
restriction of SIVmac infection by TRIM5� of African green mon-
keys (49).

Several of the TRIM5�rh RING mutants exhibited deficiencies
in higher-order association, consistent with a previous study im-
plicating the RING domain as a contributor to the higher-order
association of TRIM dimers (44). Significant correlations were
found between TRIM5�rh higher-order association and the re-
striction of N-MLV infection. These results clearly contrasted
with those obtained for restriction of HIV-1 infection by the
TRIM5rh RING domain variants. For example, the L21A
TRIM5�rh mutant, which exhibited poor higher-order associa-
tion, was able to restrict HIV-1 as potently as the wild-type
TRIM5�rh protein but completely lost its ability to restrict N-
MLV. Even when the N-MLV restriction potency was augmented
by a B30.2/SPRY domain replacement from TRIM5�hu, RING-
determined higher-order association exhibited the strongest cor-
relation with N-MLV restriction. The different phenotypes of the
TRIM5� RING mutants with respect to HIV-1 and N-MLV re-
striction may reflect differences in the formation or consequences
of the hexagonal TRIM5� lattice on the conical and spherical cap-
sids, respectively, of HIV-1 and N-MLV. The relative importance
of TRIM5� higher-order association and the formation of a
TRIM5� lattice to N-MLV restriction are consistent with the ob-
servation that changes that allow N-MLV to escape TRIM5�rh

restriction map over a large surface of the viral capsid (61).
Higher-order association of the TRIM5�rh RING domain mu-

tants apparently exerted a larger influence than E3 ubiquitin ligase
activity on the restriction of EIAV infection. Nonetheless, all of the
RING domain mutants exhibited quite potent inhibition of EIAV
infection. Thus, like HIV-1 restriction by TRIM5�rh, inhibition of

FIG 7 Turnover of TRIM5�rh RING domain mutants. Cf2Th cells expressing
TRIM5�rh RING domain mutants were treated with cycloheximide at 100
�g/ml for a 3-h period. Cells were harvested and lysed at 1-h intervals. Cell
lysates containing an equal amount of total protein were analyzed by Western
blotting with an anti-HA (�-HA) antibody and an anti-�-actin antibody. Pro-
tein half-life was determined by plotting the log of the percent initial protein
level versus time. The calculated half-life is indicated beneath the respective
panel associated with each TRIM5�rh variant.

TABLE 3 P values for Spearman rank-order correlations between TRIM5 protein properties

TRIM5� restriction

P valuea

E3 ubiquitin ligase
activity

Higher-order
association

Detergent
insolubility CA-NC binding HIV-1 Late-RT Half-life

High-order association (�) 0.4840
Detergent insolubility (�) 0.0022 (�) 0.1333
CA-NC binding (�) 0.9380 (�) 0.0097 (�) 0.8764
Late RT (�) 0.0899 (�) 0.1020 (�) 0.0112 (�) 0.2999
Half-life (�) 0.7056 (�) 0.0053 (�) 0.2131 (�) 0.0021 (�) 0.0706
Expression (�) 0.3211 (�) 0.0002 (�) 0.2463 (�) 0.0073 (�) 0.2359 (�) 0.0165
a The P values from the Spearman rank-order correlation analysis on each pair of TRIM5�rh properties/activities are listed. A positive sign indicates a direct relationship, and a
negative sign indicates an inverse relationship. Correlations with P values less than 0.02 were considered significant and are highlighted in bold.
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EIAV infection by TRIM5�rh in this context is not absolutely de-
pendent on either of the RING functions measured in our assays.
This is consistent with the retention of lentivirus restriction activ-
ity for TRIM5� variants completely lacking the RING domain (3,

46, 47). Perhaps, as discussed above, features of the lentivirus con-
ical capsid diminish the requirement for RING domain function
during the restriction process. The previously mentioned caveats
about generalizing our results to in vivo lentivirus infections apply
here to EIAV as well.

Higher-order association of the TRIM5�rh RING domain vari-
ants correlated significantly with TRIM5� binding to HIV-1
CA-NC complexes, as expected from the contribution of
TRIM5�rh higher-order structures to capsid binding (27, 43, 44).
TRIM5�rh mutants that associated to form higher-order struc-
tures also exhibited shorter half-lives and lower steady-state levels
of expression in stably expressing cell lines. Thus, although high-
er-order self-association is conducive to the TRIM5�-capsid in-
teraction, it may predispose to the formation of aggregates that
need to be avoided or processed to maintain optimal cell growth
(57). Neither the E3 ubiquitin ligase activity nor detergent in-
solubility of the TRIM5�rh variants significantly correlated
with the half-life or steady-state expression level of the pro-
teins. The mechanism of TRIM5� turnover in these stably ex-
pressing cells is unclear. A slower-migrating band reminiscent
of ubiquitylated TRIM5� was consistently observed in deter-
gent-insoluble pellets (Fig. 8), even for mutants with no or very
weak E3 ubiquitin ligase activity. Other E3 ubiquitin ligases in
the cells likely ubiquitylate TRIM5� and could potentially play
a role in its turnover.

In summary, the correlations identified in this study delineate
how the identity of the targeted retrovirus influences the contri-
butions of TRIM5� RING domain functions to antiviral restric-
tion. Different retroviruses apparently require distinct properties
of TRIM5 proteins for efficient restriction. Detailed structural in-
formation on the interactions between TRIM5� proteins and ret-

FIG 8 Detergent solubility of TRIM5�rh RING domain mutants and the relationships with restriction activities and the E3 ubiquitin ligase activity. (A) Cf2Th
cells stably expressing TRIM5 variants were lysed with 1% NP-40 buffer. Proteins in the supernatant (detergent-soluble fraction) and the pellet (detergent-
insoluble fraction) were examined with an anti-HA (�-HA) antibody for TRIM5�rh variants and an anti-�-actin antibody as a control. (B) Relationship between
detergent insolubility and the restriction activities against different viruses. Detergent insolubility was defined as the ratio of insoluble proteins to soluble
proteins, both normalized against the �-actin level in the respective fractions. (C) Relationship between detergent insolubility and E3 ubiquitin ligase activity.

FIG 9 Subcellular localization of TRIM5�rh RING domain variants. Cf2Th
cells stably expressing the HA-tagged TRIM5�rh variants were stained with an
anti-HA antibody, followed by an anti-rat secondary antibody conjugated to
Alexa-488. The TRIM5�rh proteins are shown in green, and the nuclei were
stained blue with 4=,6-diamidino-2-phenylindole.
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roviral capsids should shed light on how TRIM5� recognizes and
disassembles the capsids of different viruses.
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