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Abstract. The use of Floquet theory combined with a realistic description of the

electronic structure of illuminated graphene and graphene nanoribbons is developed to

assess the emergence of non-adiabatic and non-perturbative effects on the electronic

properties. Here, we introduce an efficient computational scheme and illustrate its

use by applying it to graphene nanoribbons in the presence of both linear and circular

polarization. The interplay between confinement due to the finite sample size and laser-

induced transitions is shown to lead to sharp features on the average conductance and

density of states. Particular emphasis is given to the emergence of the bulk limit

response.

PACS numbers: 73.23.-b, 72.10.-d, 73.63.-b
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1. Introduction

Carbon-based materials such as graphene and carbon nanotubes constitute a privileged

family of novel nanomaterials with outstanding properties [1, 2, 3]. Within this

playground, graphene optics and optoelectronics has become one of the most exciting

areas for research [4, 5, 6]. Besides being one of the best tools for non-invasive

characterization and probing of carbon-based materials [7], light can also be used as

means for achieving new functions such as improved energy harvesting [8], or novel

plasmonic properties [9, 10] and there are big expectations that we are going to have

even more in the coming years. At the core of these phenomena we are confronted with

fundamental aspects of the interaction between light and matter in low dimensionality.

While the effects of light and other bosonic excitations on the electronic properties

is usually treated within a Fermi Golden rule and/or adiabatic approximations, their

breakdown is indeed a possibility in the graphene flatland [11, 12], as demonstrated by

some remarkable experiments [13].

The illumination with a laser was also proposed to lead to non-perturbative and

non-adiabatic effects in graphene including the opening of a bandgap [14] owing to

photon-assisted coupling between electronic states at half the photon energy, i.e. ±~Ω/2.

Further studies pointed out that circularly polarized light may also lead to a Hall

effect without a static magnetic field: the photovoltaic Hall effect [15] which lacks an

experimental confirmation.

These puzzling possibilities attracted much attention [16, 17, 18] and recent

atomistic simulations of the dc electrical response hint that a laser in the mid-

infrared would be optimal for experimental verification [16]. Further studies focused

on the optical response [17, 19] as well as other interesting issues [20, 21, 22, 23].

Recently, the possibility of inducing topologically protected states by laser illumination

in semiconductors [24] and both in monolayer [25, 26] and bilayer [27] graphene has

become a hot field [28, 29] with an impact on other areas such as condensates [30] and

photonic crystals, where experiments are already available [31].

Most of the results mentioned before have been derived for bulk monolayer graphene

(bilayer graphene was also studied in [32, 27]) and only few results are available for the

case of graphene nanoribbons [26, 33]. In this paper, we extend over our previous results

[33] giving a more comprehensive and in-depth view of the numerical scheme used and

the interplay between lateral confinement and photon-assisted processes in illuminated

graphene nanoribbons. To this end, we apply Floquet theory to a nearest neighbor

tight-binding model to describe the π-orbitals around the Fermi energy in presence

of a time-periodic field. In this approach, the average density of states (DOS) and

the dc component of the conductance are calculated through an efficient reduction of

the Floquet Hamiltonian by a recursive decimation procedure [34]. The power of this

technique allows us to explore the electrical properties of the system in a wide range

of parameters, including arbitrary edge geometries and ribbon sizes as well as different

laser polarizations.
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As will be made clear in the next sections, the non-perturbative character of the

field is revealed through a strong dependence in the laser-induced gaps with respect to

the direction of the polarization. In addition to the known dynamical gaps developed

at ±~Ω/2 [14], further modifications in the DOS emerge as a consequence of the inter-

mode coupling induced by the laser. The effect is discussed in both armchair and

zigzag nanoribbons for different orientations of the radiation field. Finally, for large

nanoribbons the effects of both linear and circular polarizations are also discussed. We

show how the above modifications in the DOS average out around ±~Ω/2, thereby

recovering the known solution in the bulk limit [14, 15].

Our work is organized as follows. In section 2 we introduce the considered model

and give a detailed overview of the simulation scheme. Section 3 is devoted to the

discussion of our results. Finally, we present our conclusions in section 4.

2. Simulation scheme: Floquet theory applied to illuminated graphene

nanoribbons

In this section we outline the approach used to investigate the effects of the laser field in

the electronic structure and transport properties of graphene nanoribbons. Our starting

point is the description of the π-orbital electrons through the following tight-binding

Hamiltonian

Ĥ(t) =
∑
i

εiĉ
†
i ĉi −

∑
〈i,j〉

γij(t)ĉ
†
i ĉj, (1)

where ĉ†i (ĉi) creates (annihilates) an electron at site i and the sum in the second term

only takes pairs of nearest-neighbor sites. The potential energy induced by, e.g., a gate

voltage or local impurities, is represented by the on-site energies εi while the hopping

term γij gives the transition amplitude between sites i and j.

The time-dependent field is considered by neglecting the small magnetic component

and with an electric field which is written in a Weyl’s gauge in terms of a vector potential:

E = −∂A/∂t. The vector potential is included through the Peierls substitution [35],

which introduces an additional phase in the hopping amplitude connecting two adjacent

sites i and j, i.e.

γij(t) = γ0 exp

[
i
2π

Φ0

∫ ri

rj

A(t) · dr

]
, (2)

where γ0 = 2.7 eV is the typical hopping amplitude at zero field [3] and Φ0 is the

magnetic flux quantum. For monochromatic waves, the gauge potential related to the

time-dependent electric field is defined as

A(t) = A0 [cos β cos(Ωt)x + sin β cos(Ωt− ϕ)y] , (3)

where A0 = E0/Ω and E0 is the amplitude of the electric field. The direction and

polarization of the field are fixed by the parameters β and ϕ, respectively. In the next
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Figure 1. (a) Scheme of the considered model for the example of an armchair

nanoribbon. The laser field is applied perpendicular to the lattice and defines the

time-dependent hoppings γ+,+(t), γ+,−(t) and γ2+,0(t). (b) Representation of the real-

space Hamiltonian in terms of diagonal blocks E and hopping matrices Vi(t). The

unit cell for the case of an armchair nanoribbon is indicated by a rectangle.

section we will concentrate on three paradigmatic cases, namely, linear polarization

along either the (longitudinal) x-axis or (transversal) y-axis and circular polarization.

To deal with the time-dependence in the electronic hopping terms, we use Floquet

theorem [36, 37]. In the next subsection, the Floquet Hamiltonian accounting for the

2π/Ω-periodic real-space Hamiltonian is discussed in detail together with the employed

technique for the derivation of the observables (DOS and conductance) which are

investigated.

2.1. Determination of the matrix elements of the Floquet Hamiltonian

A scheme of the considered system is shown in figure 1(a), where the phases of the

hopping amplitudes account for the time-dependent vector potential associated to the

laser. For two adjacent (transversal) arrays in the lattice, we consider the hopping

amplitudes always going from left to right. With the assumption that the electric field

is uniform along the whole sample, the phases in equation 2 are given by the scalar

product between the vector potential and the vector rij = ri − rj connecting the two

sites. This allows to fully describe the system in terms of three possible orientations

of the vector rij, i.e., rij = a(cosαij, sinαij), with a ' 0.142 nm the distance between

nearest-neighbor carbon atoms and αij = 0,±π/3. For these orientations, the hopping

elements are

γ2+,0(t) = γ0e
i2zx cos(Ωt), (4)

γ+,±(t) = γ0e
i(zx±zy cosϕ) cos(Ωt)e±izy sinϕ sin(Ωt), (5)
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respectively, where the indices are now related to the x and y components of the vectors

connecting the carbon atoms. To simplify the notation, we define adimensional variables

zx = πaA0 cos β/Φ0 and zy =
√

3πaA0 sin β/Φ0 which quantify the relative strength of

the laser.

We divide the real-space Hamiltonian in diagonal blocks E accounting for the on-

site energies in the lattice which belong to the same transversal array. In homogeneous

samples, they are simply zero, i.e. E = 0. The hopping matrices Vi(t) connecting the

arrays alternate periodically depending on the particular position in the unit cell (see

figure 1(b)). The dimension of these block matrices is given by the number N of carbon

atoms along the transversal direction.

A Fourier decomposition of the time-dependent Hamiltonian spans the real space

into a composite space R×T including the 2π/Ω-periodic functions [36, 37]. The basis

of this Floquet space is conformed by the states |i, n〉, where the first index labels the

site location of the sites and the second, the Fourier index, indicates the number of

photons. The resulting time-independent (Floquet) Hamiltonian HF is determined by

the hopping elements connecting the states |i, n〉 and |j, n+m〉

γm+,± = γ0

∞∑
k=−∞

ikJk(zx ± zy cosϕ)Jm−k(±zy sinϕ), (6)

γm2+,0 = γ0i
mJm(2zx), (7)

where Jn(z) is the Bessel function of order n. In contrast to similar treatments of the

periodic time-dependent field based on the k.p approach [14, 15], the present calculations

may involve transitions with more than a single photon. However, for the mid-infrared

regime (~Ω ' 140 meV) and laser power (P = 1−10 mW/µm2) considered here we have

zx, zy � 1, such that these transitions decay rapidly and the leading contributions still

come from the renormalization of the hoppings (m = 0) and inelastic transitions with a

single photon (m = ±1). The method is here illustrated for the specific case of armchair

nanoribbons, but the same strategy can be easily adapted to other edge geometries.

Now that we have an explicit expression for the hopping amplitudes, we can

compute the Floquet Hamiltonian by noticing that each block in figure 1(b) is splitted

into 2NF + 1 “replicas” accounting for states with different Fourier index. In this

sense, NF denotes the maximum number of considered Fourier modes and dictates the

truncation of the total Floquet space. The on-site energies in the diagonal blocks are

given as a multiple integer of the photon energy, i.e., εi,n = n~Ω, with n = −NF , . . . , NF .

According to this Fourier expansion, the structure of the Floquet Hamiltonian can be

understood as a block tridiagonal matrix where each block is of dimension (2NF + 1)N .

The diagonal blocks EF include the arrays with different Fourier index. This group

of arrays then form a layer and the off-diagonal blocks contain the hopping amplitudes

connecting them. Since in our representation each layer contains carbon atoms belonging

to the same sublattice (A or B), the matrix elements of the diagonal blocks simply read

〈i, n|EF |j,m〉 = n~Ωδijδnm. For off-diagonal blocks, however, we need to distinguish

three different hopping matrices VF,k, with k = 1, 2 or 3, according to which layers they
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interconnect. To account for transitions with different number of photons, each matrix

is divided, in turn, into 2NF +1 submatrices such that 〈i, n|VF,k |j, n+m〉 = 〈i|Vm
k |j〉,

where

Vm
1 =

 γm+,+ γm+,−
0 γm+,+

. . .

 ,Vm
2 =

 γm2+,0 0

0 γm2+,0

. . .

 , (8)

Vm
3 =

 γm+,− 0

γm+,+ γm+,−
. . .

 . (9)

This representation of the Floquet Hamiltonian constitutes our starting point in the

analysis of the electronic properties of the ribbons in the presence of a time-dependent

field. In previous works [16], the particular case of armchair nanoribbons illuminated

by linearly polarized light along the longitudinal direction was intensively studied. This

was motivated by the fact that this geometry allows for a convenient decomposition

of the Floquet Hamiltonian into normal modes, thereby making it a suitable model to

analyze the bulk limit for a large lateral size of the ribbon. In the next section, however,

we will concentrate first on relatively small sized ribbons, and our efforts will be devoted

to investigate the role of the laser field in the characteristics of the electronic structure

due to lateral confinement. After discussing the interplay between these two effects, we

will explore the bulk limit for different directions of the linear polarization and also for

circularly polarized fields.

2.2. Density of states and Conductance

We now comment on the quantities of interest that we want to address in the next

section when taking specific values for the size and edge geometry of the ribbons as well

as tuning the laser field. Starting from the above mentioned Floquet Hamiltonian, it is

possible to define the retarded Floquet-Green functions according to [38, 39]

GF(ε) = (ε1−HF)−1 . (10)

Since we want to analyze how the electronic properties of the ribbon are affected by the

laser, we refer to the average density of states (DOS) obtained after tracing over the

sites with zero photon, i.e.

N0(ε) = − 1

π
lim
η→0

Im

[
N∑
i=1

〈i, 0|GF (ε+ iη) |i, 0〉

]
, (11)

where the (imaginary) regularization energy iη is carefully chosen to reach the

thermodynamical limit along the longitudinal direction. A “brute-force” calculation

of the inverse of the Floquet Hamiltonian could in principle represent a hard (or even

impossible) task when considering the full system. However, the decimation technique

[40, 34], based on the recursive calculation of the self-energy correction ΣF (ε) to the

diagonal block matrices, constitutes an appropriate strategy to circumvent this hurdle.
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Figure 2. Decimation procedure in Floquet space. (a) Effective representation of HF .

Dashed red crossing lines denote the reduced blocks. (b) Effective Hamiltonian after

one step: The diagonal block matrices ẼF,i and the effective hopping matrices Ṽi are

renormalized by the reduced blocks. (c) Homogeneous effective Hamiltonian after the

second step of the decimation procedure.

Figure 2 shows a scheme where the Floquet Hamiltonian is represented by an effective

linear chain. Here, the squares correspond to the diagonal blocks EF , which are

connected through the hopping matrices Vi. In this procedure, we calculate the effective

Hamiltonian resulting from the systematic elimination of blocks in the lattice (dashed

red crossing lines in the figure). This reduction of the basis along the longitudinal

direction leads to a renormalization of both the diagonal blocks and hopping matrices.

According to figure 2, after the first decimation step (panel b), these read

ẼF,1 = EF + V1
1

ε1− EF

V†1 + V†2
1

ε1− EF

V2, (12)

ẼF,2 = EF + V3
1

ε1− EF

V†3 + V†2
1

ε1− EF

V2, (13)

Ṽ1 = V1
1

ε1− EF

V2, (14)

Ṽ2 = V3
1

ε1− EF

V2. (15)

The next step in the recursion consists of the reduction of the blocks with ẼF,2, and

provides an homogeneous effective Hamiltonian (panel c) with diagonal blocks and

hopping matrices renormalized by

ẼF = ẼF,1 + Ṽ1
1

ε1− ẼF,2

Ṽ†1 + Ṽ†2
1

ε1− ẼF,2

Ṽ2, (16)

Ṽ = Ṽ1
1

ε1− ẼF,2

Ṽ2. (17)

By repeating this process M times, the self-energy correction to the diagonal block EF

accounts for a system with 2M layers along the longitudinal direction. Therefore, the
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Figure 3. (Color online) Scheme of the transport setup. The graphene nanoribbon

is coupled to two metallic reservoirs. The central region (sample) is illuminated by a

laser field perpendicular to the plane of the ribbon.

DOS reduces to

N0(ε) = − 1

π
lim
η→0

N∑
i=1

Im 〈i, 0| 1

(ε+ iη)1− EF −ΣF

|i, 0〉 , (18)

which only involves the inversion of a single block matrix.

The above scheme is also of great help for an efficient evaluation of the dc component

of the conductance. In this case we imagine a situation as the one represented on figure

3, where only a finite region of space is affected by the laser (“the sample”). If we

consider the rest as reservoirs, then we can compute the Floquet-Green functions for

the sample by representing the α-electrode (α = L,R) through a self-energy correction

Σα = ∆α − iΓα as usual. How are these Green’s functions connected to the dc

current? For non-interacting electrons, the average (coherent) current over a period

of the modulation is given by:

Ī =
2e

h

∑
n

∫ [
T

(n)
R←L(ε)fL(ε)− T (n)

L←R(ε)fR(ε)
]
dε, (19)

where T
(n)
R←L(ε) are the transmission probabilities from the left (L) to the right (R)

reservoirs involving the emission/absorption of n photons. These probabilities can be

written in terms of the Floquet-Green functions for the system [37, 41]:

T
(n)
R←L(ε) = Tr

[
2ΓR,n(ε)G(R,n)←(L,0)(ε)2ΓL,0(ε)G†(R,n)←(L,0)(ε)

]
, (20)

where G(R,n)←(L,0)(ε) is the block matrix for the Floquet-Green function connecting the

left and right electrodes with the exchange of n photons. Here the subindex F was

omitted to simplify the notation. As a consequence of the thermodynamical limit, the

coupling to the (open) leads (see figure 3) implies a decay rate in the states within the

sample which is accounted by

Γα,n(ε) = −Im [Σα(ε+ n~Ω)] . (21)

Since we assume a laser affecting only the sample region, these terms can be computed

in terms of the “bare” self-energy correction Σα(ε) obtained in the absence of time-

dependent fields. The calculation of the current is thus completed by assuming that the

asymptotic occupation in the leads, where no inelastic processes are allowed, is given

by the usual Fermi functions

fα(ε) =
1

1 + eβ(ε−µα)
, (22)
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Figure 4. (Color online) Average density of states for an armchair graphene

nanoribbon with N = 83 in the presence of linearly polarized radiation along the

x direction (a), y (b) and circular polarization (c).

where µα is the electrochemical potential in the α-lead and β the inverse temperature.

3. Results

In this section we apply the discussed method to investigate modifications in the

electronic properties of graphene nanoribbons induced by a laser field. In particular,

we scrutinize the case of a laser within the mid-infrared region of the spectrum, where

photon energies can be made smaller than the typical optical phonon energy while

keeping the laser power small (1−10 mW/µm2). By an appropriate tuning of the Fermi

energy and polarization of the laser, we show how one can dramatically change the

electrical and transport properties of the ribbons. This is illustrated for different sizes

and edge geometries of the ribbons.

Figure 4 shows the DOS (cf. equation 18) for an armchair ribbon with N = 83 as

a function of the Fermi energy. Three cases are analyzed: (a) linear polarization along

x, (b) linear polarization along y, and (c) circular polarization. The energy of the laser

is fixed to ~Ω = 140 meV, such that modifications in the DOS are expected to occur in

the vicinity of the energy ε ' 70 meV (marked by an arrow on the top panel).

In panel a, we observe that the interaction with the laser leads to a gap formation

around ε = ~Ω/2. The occurrence of this gap is related to an inelastic backscattering

process that enables transitions between quasi-states in the Floquet spectrum. In this

picture, each mode contains a series of replicas accounting for excitation states with

different number of photons. In presence of linearly polarized light along x, the electronic

states are connected to (photoexcited) hole states which belong to the same mode.
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Figure 5. (Color online) Average density of states for a metallic armchair nanoribbon

N = 52 in the presence of linearly polarized radiation (~Ω = 140 meV, P =

1 mW/µm2) along the y direction (solid red) and x direction (dotted blue).

Since electron-hole symmetry is now preserved along the point n~Ω for a replica with

n photons, the energy values at which the gap may form are commensurate with ~Ω/2.

Additionally, the width of the gap is shown to be sensitive to the transversal direction

of the momentum operator, such that it increases with the allowed values of ky. This

can be observed in the structure of the DOS around ε = ~Ω/2, where two concentric

gaps are developed, each one of them related to a different mode.

In panel b, one can observe that the DOS is drastically changed. Here the dynamical

gap around ε = ~Ω/2 is suppressed and two “satellite” depletion regions, where the

DOS is diminished, appear instead. Depending on the particular normal mode affected

by the field, these depletions may or not develop as a true gap. For a laser power

P = 10 mW/µm2 (solid line), the left depletion is crossed by a van Hove singularity and

a gap is opened in the region of the first semiconductor band.

Of particular interest is the case of a metallic armchair nanoribbon, as shown in

figure 5. Here the DOS around ε = ~Ω/2 is completely immune to the influence of

the laser, such that no bandgaps appear regardless of the particular direction of the

polarization.

The above features observed in figures 4(a) and 4(b) can be combined if the laser

field points along any intermediate direction between the x and y axes. This is shown in

panel c where a circularly polarized field is considered. Although for small samples this

last case produces similar modifications in the DOS as compared to linear polarization

along the direction x + y, in the bulk limit these two cases become qualitatively different.

As mentioned in section 3, the developed technique is not necessarily restricted

to armchair ribbons and can be easily adapted to other edge geometries. In figure 6

we show the DOS for a zigzag nanoribbon with N = 250. Compared to figure 4, the

features in the DOS observed in the armchair case are also present here. The difference
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Figure 6. (Color online) Average density of states for a zigzag nanoribbon with

N = 250 in the presence of linearly polarized radiation (~Ω = 140 meV) along the

y-direction (solid red) and x-direction (dotted blue) for a laser power P = 1 mW/µm2.

now comes from the change in the relative angle between the lattice orientation and the

direction of the polarization. In this sense, dynamical gaps around ±~Ω/2 occur now

for a laser along the y-direction. In addition, one can observe small depletions at both

sides of the gap which can be related to the laser-induced coupling between different

normal modes. We will come back to this point below. By changing the polarization

direction to the x-axis, the dynamical gap is again suppressed and several depletion

regions appear.

An analysis of the bulk situation [15, 16] would only predict laser-induced depletions

or gaps at ±n~Ω/2 and no dependence on the linear polarization direction. Natural

questions are therefore: why do these features away from ±n~Ω/2 emerge? How do we

reach the bulk limit?

Two different kind of processes are at the heart of these phenomena: intra-mode

and inter-mode photon-induced transitions. For intra-mode transitions, both the initial

and the final electronic states belong to the same transversal mode and the coupled

states are located symmetrically with respect to the charge neutrality point which leads

to the gaps or depletions at ±n~Ω/2.

In contrast, inter-mode transitions couple states that are not symmetrically located

around the Dirac point. In armchair ribbons, this is evident for the case of polarization

in the y-direction, where it turns out that inter-mode transitions are the only allowed

processes. Therefore, the polarization direction can be used to tune the relative

magnitude of the different kind of processes: intra and inter mode.

We now calculate the dc component of the conductance at zero temperature. When

T
(n)
R←L(ε) = T

(n)
L←R(ε), it is straightforward to show (cf. equation 20) that the conductance
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Figure 7. (Color online) DC component of the conductance for an armchair graphene

nanoribbon with N = 83 in the presence of linearly polarized radiation along the x

direction (a), y (b) and circular polarization (c).

reduces to:

G(ε) =
2e2

h

∑
n

T
(n)
R←L(ε). (23)

We use this expression, neglecting the small quantum pumping component

(|TR←L − TL←R| � TR←L).

Figure 7 shows the conductance for the same set of parameters as in figure 4. One

observes that the same qualitative features also appear in this case. By comparing the

panels in the figure one sees that the direction of the polarization may be used as a

“knob” to turn on or off the conductance at appropriate values of the Fermi energy.

3.1. Bulk limit

Now that the origin of the features observed in figures 4 and 7 has been clarified, we turn

to the issue of how the bulk limit is achieved. For a ribbon with a high number of modes,

a very large number of crossings in the Floquet spectrum become “accumulated” in the

neighbourhood of ±n~Ω/2. Once the separation between these features becomes small

enough, the depletions merge and the system is insensitive to the particular direction of

the (linear) polarization. To illustrate the emergence of the bulk limit we refer to figure

8 showing the DOS for an armchair ribbon with N = 300. Linear polarization along the

x, y and x + y directions, respectively, are considered in panels a,b and c, while circular

polarization is shown in panel d. To account for a large number of bands around the

region ~Ω/2, we increase significantly the frequency and power of the laser to get a flavor

of the bulk effects while keeping the dimension of the Floquet space treatable. A direct

observation of panels a to c shows that the sharp features observed in figures 4 and 6 for
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Figure 8. (Color online) Average density of states for an armchair graphene

nanoribbon with N = 300 in the presence of linearly polarized radiation along the

x (a), y (b) and x + y (c) directions. Circular polarization is shown in panel d. For a

better visualization of the bulk limit a large value of Ω was taken, ~Ω = γ0 = 2.7 eV.

linearly polarized laser are now averaged in such a way that the same DOS is obtained

for any direction of the laser. On the other hand, qualitative differences between linear

and circular polarization become evident in this limit, where one can see that a strong

gap appears in the last case.

4. Conclusions

We have presented a detailed account of a simulation scheme for assessing the electrical

properties (average conductance and density of states) of laser-illuminated graphene

nanoribbons. The scheme is based on the application of Floquet theory to a realistic

Hamiltonian which allows the simulation of system sizes beyond the scope of the usual

k.p approximation. The usefulness of this scheme is illustrated on nanoribbons under

different polarizations (linear and circular). A simple analysis allowed us to rationalize

the emergence of the bulk 2d limit.
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Hillenbrand R and Koppens F H L 2012 Nature advance online publication

[11] Foa Torres L E F and Roche S 2006 Phys. Rev. Lett. 97 076804; Foa Torres L E F, Avriller R and

Roche S 2008 Phys. Rev. B 78 035412.

[12] Lazzeri M and Mauri F 2006 Phys. Rev. Lett. 97 266407.

[13] Pisana S, Lazzeri M, Casiraghi C, Novoselov K S, Geim A K, Ferrari A C and Mauri F 2007 Nat.

Mater. 6 198.

[14] Syzranov S V, Fistul M V and Efetov K B 2008 Phys. Rev. B 78 045407.

[15] Oka T and Aoki H 2009 Phys. Rev. B 79 081406.

[16] Calvo H L, Pastawski H M, Roche S and Foa Torres L E F 2011 Appl. Phys. Lett. 98 232103.

[17] Zhou Y and Wu M W 2011 Phys. Rev. B 83 245436.

[18] Savelev S E and Alexandrov A S 2011 Phys. Rev. B 84 035428.

[19] Busl M, Platero G and Jauho A P 2012 Phys. Rev. B 85 155449.

[20] Kibis O V 2010 Phys. Rev. B 81 165433.

[21] Iurov A, Gumbs G, Roslyak O and Huang D 2012 J. Phys.: Condens. Matter 24 015303.

[22] Liu J T, Su F H, Wang H and Deng X H 2012 New J. Phys. 14 013012.

[23] San-Jose P, Prada E, Schomerus H and Kohler S 2012 Appl. Phys. Lett. 101 153506.

[24] Lindner N H, Refael G, Galitski V 2011 Nat Phys 7 490.

[25] Kitagawa T, Oka T, Brataas A, Fu L and Demler E 2011 Phys. Rev. B 84 235108.

[26] Gu Z, Fertig H A, Arovas D P and Auerbach A 2011 Phys. Rev. Lett. 107 216601.

[27] Suarez Morell E, and Foa Torres L E F, to appear in Phys. Rev. B. 2012.
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