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Abstract 
A combination of variable-temperature infrared spectroscopy with volumetric gas 
adsorption measurements was used to study the thermodynamics of hydrogen 
adsorption, at a low temperature, on calcium-exchanged zeolites X and Y. Two 
adsorption regimes were considered: (i) localized adsorption of dihydrogen molecules 
on Ca2+ cation sites, and (ii) delocalized hydrogen adsorption following saturation of the 
Ca2+ adsorbing centres. For localized adsorption, the corresponding enthalpy change 
was found to be in the range of -12 to -15 kJ mol-1, while the isosteric heat of 
delocalized adsorption was found to be in the range of -5 to -6 kJ mol-1. These 
experimental results are discussed in the broader context of corresponding data for other 
alkaline zeolites, with a focus on correlation between adsorption enthalpy and entropy 
for the localized adsorption regime. 
 
 
 
1.  Introduction 
 
The search for materials capable of safe and cost effective storage and on-board 

transport of hydrogen constitutes a major issue in the energy sector; among solutions 

being sought, porous adsorbents constitute a main line of current research [1,2]. These 

materials comprise mainly active carbons, including carbon nanostructures [3-8], and 

porous metal-organic frameworks (MOFs) and related materials [9-15]. Because of the 

high density of the aluminosilicate framework, which results in a low gravimetric 

uptake of the adsorbed gas, zeolites themselves are not likely candidates for on-board 

hydrogen storage and delivery. However, well known crystal structure and easy ion 

exchange make zeolites ideal materials for systematic studies on hydrogen bonding to a 

wide variety of metal-cation centres. And the realization that such studies can lead to 

useful insights for designing more prospective hydrogen adsorbents (e.g. MOFs having 
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exposed cation sites) lead to examine in detail hydrogen adsorption on zeolites, focusing 

attention on the gas-solid interaction energy; both experimental [16-21] and theoretical 

[22-26] studies were recently reported by several research groups. 

 We report here on experimental studies on hydrogen adsorption on calcium-

exchanged faujasites, types X and Y. Gas adsorption isotherms (at 77.3 and 90.2 K) 

were used to derive the corresponding isosteric heat of adsorption and its variation with 

surface coverage, while variable temperature infrared spectroscopy was used to 

determine hydrogen adsorption enthalpy and entropy, thus achieving a fairly complete 

thermodynamic characterization of the gas adsorption process. The results are discussed 

in the broader context of available data for hydrogen adsorption on other alkali and 

alkaline-earth cation exchanged zeolites, with a view to gain further knowledge on the 

influence of exposed (coordinatively unsaturated) metal cations on hydrogen adsorption 

on porous solids, and also to highlight the important role played by the adsorption 

entropy. 

 

2.  Materials and methods 
 
Faujasite-type zeolites X and Y were synthesized in their sodium forms by following 

standard procedures [27]; they had Si:Al ratios of 1.5 and 2.7, respectively. These 

parent materials were then repeatedly exchanged with a 0.5 M solution of calcium 

nitrate. Chemical analysis showed that practically total exchange of calcium for sodium 

was attained (only traces of sodium were found) in the case of the X zeolite, while for 

the Y zeolite only a partial exchange was attained. Hence, the calcium-exchanged 

samples are hereafter termed Ca-X and (Ca,Na)-Y, respectively. Powder X-ray 

diffraction of these samples showed good crystallinity in both cases, and all diffraction 

lines could be assigned to the corresponding faujasite-type structure [28]. 

 Low temperature (77.3 and 90.2 K) hydrogen adsorption isotherms on Ca-X and 

(Ca,Na)-Y samples were measured on a Micromeritics ASAP 2010M gas adsorption 

analyser, up to atmospheric pressure. For these hydrogen adsorption measurements, the 

zeolite samples were previously outgassed under a dynamic vacuum (ca. 10-2 Torr, 1 

Torr = 1.32 mbar) at 673 K overnight; subsequently, they were further outgassed for a 

short time at the same temperature under an ultra-high vacuum (ca. 10-6 Torr). Each 

adsorption isotherm was measured along 24 h, allowing for over one hundred 

equilibrium points to be registered. High purity hydrogen (premier quality) was supplied 
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by Metal Carbides. From the adsorption isotherms thus recorded, corresponding values 

of isosteric heat of adsorption were obtained by using the corresponding computer 

program supplied by Micromeritics.  

 For infrared (IR) spectroscopy, a thin self-supported wafer of each sample was 

prepared and activated (outgassed) in a dynamic vacuum (residual pressure < 10-4 Torr) 

for 3 h at 673 K inside a home made IR cell, described elsewhere [29], which allowed in 

situ sample activation, gas dosage and variable temperature IR spectroscopy to be 

carried out. After recording the blank spectrum of the zeolite wafer at liquid nitrogen 

temperature the cell was dosed with hydrogen, it was then closed, and spectra were 

taken at several fixed temperatures (within the range of 78 to 140 K) while 

simultaneously registering temperature and hydrogen equilibrium pressure inside the 

cell. For that purpose, the IR cell was equipped with a platinum resistance thermometer 

(Tinsley) and a capacity pressure gauge (Baratron). The precision of these 

measurements was about ±2 K and ±2×10-2 Torr, respectively. Fourier transform IR 

spectra were recorded, at 3 cm-1 resolution, by using a Bruker IFS66 instrument; 64 

scans were accumulated for each spectrum. 

 It should be noted that localized adsorption of hydrogen molecules on zeolite 

alkali and alkaline-earth (extra-framework) cations leads to activation in the IR of the 

H−H stretching mode, which shows the characteristic IR absorption band red-shifted 

from the wavenumber value of the corresponding (Raman-active) mode of gas-phase 

molecular hydrogen [30-32]. This characteristic IR absorption band of adsorbed 

hydrogen, which usually appears in the range of 4050-4110 cm-1, can be used to monitor 

adsorption thermodynamics by following the variable temperature IR (VTIR) 

spectroscopic method which in its very essence is outlined below in order to facilitate 

understanding of this article. Further details of the method can be found elsewhere 

[33,34]. 

 At any given temperature, the integrated intensity of the characteristic IR 

absorption band (of adsorbed hydrogen) should be proportional to surface coverage, θ, 

thus giving information on the activity of both the adsorbed species and the empty 

adsorbing sites; simultaneously, the equilibrium pressure gives the activity of the gas-

phase. Hence, the corresponding adsorption equilibrium constant, K, can be determined, 

and the variation of K with temperature leads to the corresponding values of standard 

adsorption enthalpy (ΔHo) and entropy (ΔSo). For deriving these values, integrated band 
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intensity, A, temperature, T, and equilibrium pressure, p, are considered to be 

interrelated by the Langmuir-type equation: 

 

θ= A/AM= K(T) p / [1 + K(T) p]              (1) 

 

where AM stands for the integrated band intensity corresponding to full coverage (θ = 1). 

Combination of Eq. (1) with the well known van’t Hoff equation (2) leads to Eq. (3) 

below: 

 

K(T) = exp(-ΔH0/RT)exp(ΔS0/R)              (2) 

 

ln[A/( AM-A)p] = (-ΔH0/RT) + (ΔS0/R)             (3) 

 

 By plotting the left-hand side of Eq. (3) against reciprocal temperature, for data 

obtained over a relatively large temperature range, corresponding values of ΔH0 and 

ΔS0, assumed to be temperature-independent, can directly be derived. 

 

3.  Results and discussion 
 

Fig. 1 shows variable-temperature FTIR spectra, in the H−H stretching region, of 

hydrogen adsorbed on the zeolite Ca-X. A single H−H stretching band is seen, centred 

at 4082 cm-1. This IR absorption band corresponds to the dihydrogen molecule 

polarized by Ca2+ ions. Polarization, which is known to be the driving force for H2 

adsorption [21,23,24], renders IR-active the fundamental H−H stretching mode, which 

is only Raman-active (at 4163 cm-1) for the free dihydrogen molecule. Such a 

polarization also brings about a bathochromic shift of ν(H−H) which, in general terms, 

is proportional to the polarizing power of the cation involved [18,21,35]. However, the 

detailed structure of the cationic adsorbing centre (which includes the cation and nearby 

anions of the zeolite framework) is also known to have an influence on the magnitude of 

the bathochromic shift [21,30, 31]. Hence, the actual value of ν( H−H) depends on both, 

the extra-framework cation involved and the zeolite being considered. Corresponding 

variable-temperature FTIR spectra of hydrogen adsorbed on the zeolite (Ca,Na)-Y are 

shown in Fig. 2. The IR absorption band of H2 interacting with Ca2+ ions is now seen at 
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4078 cm-1. An additional (much weaker) band was also seen at 4125 cm-1 (not shown) 

and assigned, in agreement with literature reports [31,36], to hydrogen interacting with 

Na+ ions. This latter band, which comes from an incomplete ion exchange of Ca2+ for 

Na+ in the parent Na-Y zeolite, is of no concern here. 

 From the sets of variable-temperature IR spectra shown in Figs. 1 and 2, the 

linear plots of Eq. (3) shown in Fig. 3(a,b) were obtained. From these linear plots, the 

standard adsorption enthalpy was found to be ΔH0 = -12.5 kJ mol-1 for hydrogen on Ca-

X, and ΔH0= -15.0 kJ mol-1 for hydrogen on (Ca,Na)-Y. The corresponding entropy 

change, ΔS0, resulted to be -118 and -127 J mol-1 K-1, respectively. Estimated error 

limits are ±0.8 kJ mol-1 for ΔH0 and ±10 J mol-1 K-1 for ΔS0. It should be noted that for 

obtaining the plots shown in Fig. 3 AM has to be known. An approximate value of this 

parameter was obtained, in each case, by recording IR spectra for increasing doses of 

hydrogen at 77 K and extrapolating the resulting Langmuir-type isotherm. This 

approximate value was then refined by plotting the left-hand side of Eq. (3) against 

reciprocal temperature for AM values which were changed in small steps around the 

original value, and selecting (by linear regression) the best fit to the whole set of 

experimental data. The basis of this method was explained in detail elsewhere [34]. 

 The volumetric hydrogen adsorption isotherms obtained at 77.3 K on both 

zeolites, Ca-X and (Ca,Na)-Y are shown in Fig. 4; while Fig. 5 depicts the 

corresponding adsorption isotherms at 90.2 K. In every case, these hydrogen adsorption 

isotherms show two distinct regions; a very steep (nearly vertical) region at a very low 

pressure, followed by a second region where adsorbed volume becomes more dependent 

on equilibrium pressure. This experimentally observed behaviour suggests that two 

different adsorption processes occur in each case; such distinct processes will be 

analysed in some detail below. Let us first point out that the very steep initial region of 

the adsorption isotherms precludes precise determination of the isosteric heat of 

adsorption, qiso, for the initial amounts of adsorbed hydrogen; in fact, unreasonable 

results were obtained when trying to calculate qiso values corresponding to hydrogen 

adsorbed amounts smaller that about 10 cm3 g-1 (STP). Disregarding this region, Fig. 6 

shows the evolution of adsorption heat (qiso) against adsorbed volume for hydrogen on 

Ca-X and on (Ca,Na)-Y; as determined from the corresponding adsorption isotherms at 

77.3 and 90.2 K. 
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 For hydrogen adsorbed on Ca-X, Fig. 6 shows an initial plateau, up to ca. 37 cm3 

g-1 (STP), where qiso has a constant value of 12 kJ mol-1; which coincides, within 

experimental error, with the value of ΔH0 = -12.5(±0.8) kJ mol-1 determined by the 

spectroscopic VTIR method (as stated above). In the case of (Ca,Na)-Y, no precise 

initial value of qiso could be obtained, because the corresponding plateau was not 

reached within the usable data range. However, extrapolation of the curve shown in Fig. 

6 suggests that for the smallest hydrogen doses qiso should be significantly greater than 

12 kJ mol-1, in agreement with the fact that a value of ΔH0 = -15.0(±0.8) kJ mol-1 was 

determined by VTIR spectroscopy. Note that infrared spectroscopy monitors only H2 

molecules which are in direct (close) interaction with adsorbing cationic centres of the 

zeolite, and hence, the determined values of ΔH0 correspond to the adsorption regime up 

to saturation of all Ca2+ cations with adsorbed H2 molecules. 

 In both cases, H2/Ca-X and H2/(Ca,Na)-Y, the plot of qiso against adsorbed 

hydrogen volume (Fig. 6) confirms that two different adsorption processes occur. First, 

adsorbed hydrogen molecules can come into direct contact with the zeolite Ca2+ cations, 

giving rise to localized adsorption involving the initial values of qiso discussed above. 

For Ca-X, this process extends up to about 37 cm3 g-1 (STP) of adsorbed hydrogen, 

while for (Ca,Na)-Y it only reaches up to about 12 cm3 g-1. This is in consonance with 

the expected smaller amount of Ca2+ ions per gram of zeolite in (Ca,Na)-Y, as compared 

with Ca-X; because of a higher Si:Al ratio in (Ca,Na)-Y, and also because of incomplete 

exchange of calcium for sodium. Once the cationic hydrogen adsorbing centres are all 

saturated, qiso drops to a value of 4 to 6 kJ mol-1; which is typical of unspecific 

(delocalized) adsorption processes involving only weak (London-type) interaction 

forces. Note that both, porous carbons and organic (porous) polymers, were repeatedly 

reported [1,37] to show a hydrogen adsorption heat in the range of 3.5 to 6.5 kJ mol-1. A 

further comment concerns the observed fact (Fig. 6) that, after the initial adsorption 

process, qiso falls down somewhat less steeply for the H2/(Ca,Na)-Y system than for 

H2/Ca-X. This observed difference is likely to be due, at least in part, to the presence (in 

the first case) of some Na+ ions which, having a smaller polarizing power, are expected 

to contribute to hydrogen adsorption once all Ca2+ ions are saturated. 

 Additional information, particularly in regard to the weak interaction between 

hydrogen and the Ca-X zeolite, can be obtained from analysis of the hydrogen 

adsorption isotherms. Since the qiso plot (Fig. 6) is composed of two regions, each of 
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them at a nearly constant qiso value, it should be possible to adjust the adsorption data by 

using a sum of two Langmuir type isotherms, that can be written as: 

 

N= [N1K1/(1+pK1)] + [N2K2/(1+pK2)]             (4) 

 

where N is the total amount of adsorbed hydrogen, N1 and N2 the adsorbed amount 

corresponding to each of the adsorption regimes and K1 and K2 the equilibrium constant 

of the corresponding  Langmuir equation.  Note that each of the two terms in the right-

hand side of eqn. (4) has a rather different meaning. The first term corresponds to the 

relatively strong interaction that involves localized adsorption on cation sites; the 

second term is the analytical representation of non-localized adsorption in micropores, 

which also follows a Langmuir-type equation, as shown by Bathia and Myers for 

carbons [37]. Eq. (4) was used to fit the data of the adsorption isotherm (at 77.3 K) of 

hydrogen on Ca-X, depicted in Fig. 4. The result, shown in Fig. 7, confirms that a 

satisfactory fit could indeed be obtained. The fitting parameters corresponding to the 

strong interaction resulted to be N1= 37.5(±0.5) cm3 g-1 (STP) and K1= 79(±2) Torr-1. 

The correctness of these values can readily be checked; the former coincides with the 

sudden change in qiso (Fig. 6), while the latter corresponds to a ΔG0 value of -2.80 kJ 

mol-1 as obtained from the standard Gibbs equation, ΔG0= -RTlnK1. Since the 

corresponding ΔH0 value is -12.5 kJ mol-1, ΔS0 results to be -126 J mol-1 K-1; a value 

which coincides (within experimental error) with that of ΔS0= -118(±10) J mol-1 K-1 

obtained independently by variable-temperature IR spectroscopy. For the second term 

of the sum in Eq. (4), which accounts for the weak interaction, the corresponding fitting 

parameters resulted to be, N2= 159(±1.5) cm3 g-1 (STP) and K2= 2.15(±0.05)×10-3 Torr-

1. This value of K2 yields ΔG0 = -3.93 kJ mol-1, and since qiso (which differs from ΔH0 

by a mere RT term) has a value of about 5 kJ mol-1 (Fig. 6), the corresponding entropy 

change results to be of about - 122 J mol-1 K-1. A similar calculation would not go well 

for the H2/(Ca,Na)-Y system, because (for the reasons already commented upon) the 

curve describing the experimentally determined variation of qiso as a function of 

hydrogen adsorbed amount cannot be neatly divided into two parts, each of them 

showing a (nearly) constant qiso value. Hence, modelling of the adsorption isotherm 

would imply putting at least three summing terms on the right-hand side of Eq. (4); 
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which would lead to having too many adjustable parameters, and to corresponding 

uncertainty arising from correlation effects. 

 Finally, it seems pertinent to analyse the results here reported for the standard 

adsorption enthalpy and entropy of molecular hydrogen on calcium-exchanged 

faujasites in the context of corresponding data for other alkaline zeolites. For that 

purpose, Table 1 summarizes recently reported data [38-40] of ΔH0 and ΔS0 for 

hydrogen adsorption on several alkali and alkaline-earth cation exchanged zeolites, 

together with those here reported for Ca-X and (Ca,Na)-Y. Note that these ΔH0 and ΔS0 

values correspond to the process involving (cation) localized hydrogen adsorption, 

which is the only one measured by the VTIR method. These data clearly show, as 

discussed in detail elsewhere [39], that there is a non-linear correlation between 

hydrogen adsorption enthalpy and entropy, in the sense that (in general terms) larger 

values of ΔH0 involve larger values of ΔS0. Such a correlation can best be appreciated in 

Fig. 8, where ΔH0 is plotted against ΔS0. Clearly, the points corresponding to (Ca,Na)-Y 

and to Ca-X fit well into the correlation curve, thus given further confidence on the 

results here reported. 

 Enthalpy-entropy correlation (also termed compensation) was also reported to 

occur in a wide range of chemical processes involving relatively weak interaction forces 

[41-43]. For the case of hydrogen adsorption on zeolites such a correlation reflects the 

fact that a stronger (enthalpy related) interaction between hydrogen molecules and 

zeolite adsorbing centres leads to a larger decrease of motion freedom of the adsorbed 

molecules, and hence to (entropy related) greater order of the system. It should also be 

noted that there is an intrinsic limit for ΔS0, since each adsorbed molecule can lose no 

more than all of its degrees of motion freedom, while in principle no definite limit exists 

for ΔH0; and this would explain the increasing slope of the curve representing the plot 

of ΔH0 against ΔS0 (Fig. 8) when ΔS0 increases more and more. ΔS0 data reported in Fig. 

8 were obtained by VTIR spectroscopy, and they are referred to a standard state at 1 

Torr (1.32 mbar) and 100 K, representative of the pressure and temperature range at 

which IR spectra were obtained. Since the entropy content of 1 mol of hydrogen at 1 

Torr and 100 K is of about 175 kJ mol-1, this would be the uppermost limit of ΔS0. 

However, this limit is not likely to be attained, because adsorbed hydrogen molecules 

are known to preserve a certain degree of rotational freedom, as well as vibration 
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against the zeolite adsorbing centre [18,31,44]. Whichever the case, however, we wish 

to remark that the observed correlation between enthalpy and entropy changes upon 

adsorption should be taken into account when designing potential adsorbents for storage 

and delivery of molecular hydrogen. 

 

Conclusions 

 Thermodynamics of hydrogen adsorption on the zeolites Ca-X and (Ca,Na)-Y 

was studied by combining variable-temperature IR (VTIR) spectroscopy with 

volumetric measurements of hydrogen adsorption at 77.3 and 90.2 K. The case of Ca-X, 

the simplest of the two here examined, clearly shows that two types of interaction mode 

are possible for hydrogen molecules on cationic zeolites. The first of these modes 

involves a relatively strong electrostatic interaction of the adsorbed H2 molecules with 

the exposed metal cation centres; such an interaction results in polarization of the 

adsorbed molecule, which renders the H−H stretching mode IR active. Moreover, for 

Ca-X, the interaction sites appear to be all of them equivalent and non mutually 

interacting, thus giving rise to a plateau in the initial portion of the plot of isosteric heat 

of adsorption against surface coverage. This indicates an ideal, Langmuir-type, nature of 

adsorption which is confirmed by the applicability of the VTIR spectroscopic method. 

 Further to that, a non specific (delocalized) adsorption mode takes place 

presumably once all of the exposed metal cations are saturated. This second adsorption 

mode, which corresponds to the filling of zeolite pores, shows a smaller interaction 

energy, similar to that reported for hydrogen adsorption on porous carbons and which 

can be assigned to weak (dispersion-type) interaction forces. It is remarkable that this 

second adsorption process can also be described by a Langmuir-type adsorption 

isotherm. 

 For the case of (Ca,Na)-Y, the results are somewhat blurred because of 

incomplete cation exchange. However, in general terms, the basic concepts stated above 

can still be applied. VTIR spectroscopy still shows an initially strong interaction due to 

localized adsorption of hydrogen molecules on Ca2+ cation centres, followed by a 

weaker interaction mode which should correspond to the ensuing pore filling at higher 

H2 equilibrium pressure. 

 The standard adsorption enthalpy, ΔH0, for the strong interaction mode was 

found to be -12.5 and -15.0 kJ mol-1 for Ca-X and (Ca,Na)-Y, respectively. Such a 

relatively large values of ΔH0 were found to involve also correspondingly large values 
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of adsorption entropy: -118 and -127 J mol-1 K-1 for hydrogen adsorption on Ca-X and 

Ca-Y, respectively, referred to an standard state at 1 Torr and 100 K. Indeed, both 

systems, H2/Ca-X and H2/(Ca,Na)-Y, conform to an overall enthalpy-entropy 

compensation effect already observed for hydrogen adsorption on other alkali and 

alkaline-earth cation exchanged zeolites. 
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Table 1. Spectroscopic and thermodynamic data for hydrogen adsorbed on several 

zeolites. Error limits for ΔH0 and ΔS0 are ±1 kJ mol-1 and ±10 J mol-1 K-1, respectively. 

Zeolite ν(H−H) 
(cm-1) 

-ΔH0 
(kJ mol-1) 

-ΔS0 
(J mol-1 K-1) 

Ref. 

(Mg,Na)-Y 4056 18 136 38 

(Ca,Na)-Y 4078 15 127 This work 

Ca-X 4082 12.5 116 This work 

Mg-X 4066 11 103 39 

Na-FER 4100 6 78 40 

Li-ZSM-5 4092 6.5 90 19 

Na-ZSM-5 4101 10.3 121 21,39 
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Figure captions 

 Figure 1. Variable Temperature FT-IR spectra (zeolite blank subtracted) in the 

H−H stretching region, of H2 adsorbed on Ca-X. Temperature, in K, and equilibrium 

pressure (Torr, in brackets) are shown (1 Torr = 1.32 mbar). 

 

Figure 2. Variable Temperature FT-IR spectra (zeolite blank subtracted) in the 

H−H stretching region, of H2 adsorbed on (Ca,Na)-Y. Temperature, in K, and 

equilibrium pressure (Torr, in brackets) are shown (1 Torr = 1.32 mbar). 

 

Figure 3a. Plot of the left-hand side of Equation (3) against reciprocal 

temperature for H2/Ca-X. R, linear regression coefficient; SD, standard deviation. 

 

Figure 3b. As in 3a: H2/(Ca,Na)-Y system. 

 

Figure 4. Volumetric hydrogen adsorption isotherms at 77.3 K on Ca-X 

(squares) and on (Ca,Na)-Y (circles) zeolites. Black symbols denote adsorption and 

white ones desorption. 

 

Figure 5. Volumetric hydrogen adsorption isotherms at 90.2 K on Ca-X 

(squares) and on (Ca,Na)-Y (circles) zeolites. 

 

Figure 6. Evolution of adsorption heat (qiso, kJ mol-1) against adsorbed volume 

(cm3 g-1, STP) for hydrogen on Ca-X (squares) and on (Ca,Na)-Y (circles); as 

determined for the corresponding adsorption isotherms at 77.3 and 90.2 K. 

 

Figure 7. Volumetric hydrogen adsorption isotherm at 77.3 K on Ca-X zeolite 

(squares), with the corresponding fitting curve obtained according to Equation (4). 

 

Figure 8. Standard adsorption enthalpy versus entropy for hydrogen adsorption 

on several cation exchanged zeolites. The two stars refer to values obtained in this work 

with Ca-X and (Ca,Na)-Y.  
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