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We demonstrate optically pumped polymer band-edge lasers based on a two-dimensional photonic

crystal slab fabricated by nanoimprint lithography (NIL). Lasing was obtained at the photonic

band-edge, where the light exhibits a low group velocity at the C point of the triangular lattice

photonic crystal band structure. The active medium was composed of a dye chromophore-loaded

polymer matrix directly patterned in a single step by nanoimprint lithography. Plane-wave and

finite difference time domain algorithms were used to predict experimental lasing frequencies and

the lasing thresholds obtained at different C points. A low laser threshold of 3 lJ/mm2 was

achieved in a defect-free photonic crystal thus showing the suitability of nanoimprint lithography

to produce cost-efficient optically pumped lasers. VC 2013 American Institute of Physics.

[http://dx.doi.org/10.1063/1.4790646]

In recent years, polymer dye lasers have attracted con-

siderable attention mainly due to the ease with which dyes

may be incorporated in polymer, their capability to present a

large tuneable emission by simply using different dyes, and

the possibility to pattern polymers with cost-efficient fabrica-

tion processes over large areas for photonic and bio-sensing

applications. So far, optically pumped organic lasers have

been demonstrated over a large range of the visible spec-

tra.1–6 These fabrication properties and optical characteristics

when combined with the control of light by photonic crystal

structures have led to study polymer photonic crystals (PhC)

band-edge lasers. They possess an intrinsic feedback mecha-

nism based on Bloch waves near the PhC band edge leading

to Bragg reflections induced by periodic structure, which

reduce the group velocity of photons to zero at certain points

of the band structure. Efficient distributed feedback is

obtained by introducing a periodic modulation of the refrac-

tive index to the active material. Until now, efforts have

been focused on demonstrating new functionalities of two-

dimensional photonic crystals, such as couplers,7 filters,8

waveguides,9 and lasers,10 using mature fabrication tools

developed for silicon and semiconductor technology. Nano-

imprint lithography (NIL) has been proposed as a candidate

of high-resolution lithography for high volume and cost-

effective production over large areas with sub-10 nm resolu-

tion.11 NIL is a technique characterised by the unique ability

to pattern active or functionalised polymer media in a single

step.12,13 For instance, an important number of photonic

components fabricated by NIL have recently been demon-

strated, such as a wavelength filter based on a Bragg grating

on a waveguide,14 a micro-ring resonator,15 1D and 2D

band-edge lasers,16–18 and photonic crystals for light extrac-

tion applications.19,20 In this work, we have achieved two-

dimensional polymer photonic crystal band-edge lasers

fabricated by nanoimprint lithography in a dye-loaded print-

able polymer in a single fabrication step. The devices exhibit

lasing oscillations at the different C-point band edge fre-

quencies. Lasing frequencies predicted by plane wave expan-

sion are in good agreement with the measured ones. The

difference in lasing thresholds at the C point band edge fre-

quencies are explained by calculating the mode distribution

overlap within the gain medium.

The polymer was loaded with dye by the simple process

of mixing Rhodamine 6G (from Sigma Aldrich) with the

printable polymer mr-NIL 6000 (from micro resist technol-
ogy) in two concentrations of 2.5� 10�3 mol/l and 5� 10�3

mol/l. mr-NIL 6000 was chosen due to its relatively low

glass transition temperature, around 45 �C, which enables

low temperature printing and minimises the risk of degrada-

tion of the organic emitters during thermal NIL.21 The dye-

loaded polymer was spin-coated on a glass substrate with a

thickness of 400 nm. The refractive index of the polymer

was measured at a wavelength of 550 nm by ellipsometry to

be 1.614. Silicon stamps were fabricated by electron beam li-

thography using a Jeol 6000 instrument. A dose of 130 lC/

cm2 and a beam current of 100 pA were used with a 150 nm

thick layer of ZEP 520 resist (Zeon Corporation) pre-baked

at 120 �C and developed during 30 s in a solution of ZED
N50 (Zeon Corporation). The silicon stamp was etched to a

depth of 350 nm using an inductively coupled plasma (ICP)

reactive ion etching system (Surface Technology System)

with a mixture of SF6 and C4F8 gases. The stamp contained

two triangular arrays of circular pillars with lattice constant

of 500 and 580 nm. It was treated with an anti-adhesivea)vincent.reboud@cea.fr.
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monolayer of tridecafluor-1, 1, 2, 2-tetrahydrooctyl trichloro-

silane deposited in the vapour phase, resulting in a low sur-

face energy,22 to facilitate the release of the stamp from the

polymer. Using a 2.5 in. Obducat nanoimprinting machine,

the stamp was imprinted into the spin-coated polymer at a

pressure of 60 bars for 5 min under a temperature of 90 �C.

The pressure was sustained during cooling until the tempera-

ture reached 40 �C.

Photoluminescence (PL) was measured normal to the

sample surface through a 10�microscope objective under

laser excitation of 514.5 nm with a power of 200 lW. The

dye-loaded polymer was imprinted with a non-structured

stamp to test for changes to its optical properties due to the

imprinting process. A 5% decrease in the PL intensity of the

dye loaded polymer was measured, for both concentrations,

compared to freshly spin-coated films. SEM images of the

2D nanoimprinted PhCs in the dye chromophore-loaded

polymer matrix are shown in Figure 1.

The samples were keep in a vacuum cell to reduce pho-

tobleaching of the dye and were optically pumped with a

1 ns pulse length 10 Hz frequency-doubled Q-switched

Nd:VO4 laser light at 532 nm focused to a 40 lm diameter

spot on the sample surface. Figure 2 shows the measured

emission spectra of the 2D PhCs with 500 and 580 nm lattice

constants at different pump power, i.e., three times above the

measured laser threshold for the 5� 10�3 mol/l concentra-

tion nanoimprinted dye loaded polymer (Table I). The spec-

tral laser linewidth at the full width at half maximum

(FWHM) was measured to 1.1 nm above the threshold (Fig-

ures 2(a)–2(c)). This value is limited by the resolution of the

spectrometer. The FWHM of the emission spectrum below

the laser threshold is equal to 45 nm (Figure 2(d)). Figure

2(c) shows the emitted spectra of the 2D PhC below the

threshold and under a pulsed excitation of 17 lJ/mm2. For a

dye concentration of 5� 10�3 mol/l, the emission intensities

were plotted as function of the incident excitation fluence for

the laser with 500 nm lattice constant (inset of Figure 2(a))

and for the laser with 580 nm lattice constant (inset of Figure

2(a)). The light input-output relation exhibits a sharp turn at

the laser threshold. Similar spectra were obtained for the

polymer doped with a dye concentration of 2.5� 10�3 mol/l

showing the same lasing frequencies. At the photonic band-

edge, the photon-matter interaction increases due to the sig-

nificant reduction of the group velocity. To indentify band-

edge frequencies, a plane wave algorithm from Optiwave
Corporation was used to calculate the 2D dispersion relation

of the 2D PhC with a triangular lattice, for the transverse

FIG. 1. SEM micrograph of nanoimprinted triangular lattice photonic crys-

tals in dye-doped mr-NIL 6000 printable polymer. Inset: (left) SEM top-

view of one silicon stamp and (right) zoom of a dye-doped nanoimprinted

photonic crystals.

FIG. 2. Photoluminescence of 2D PhC with a

500 nm lattice constant under a pulsed excita-

tion of (a) 3.8 lJ/mm2 (lasing at the C1 point),

and (b) solid line: 17 lJ/mm2 (lasing at the C1

and C2 points), dot line: emission spectrum of

Rhodamine 6 G in mr-NIL 6000 below the laser

threshold, (c) Photoluminescence of 2D PhC

with a 580 nm lattice constant under a pulsed

excitation of 16.5 lJ/mm2 (lasing at the C3

point). Dye concentration of 5� 10�3 mol/l�1,

d/ Emission spectrum of Rhodamine 6 G in mr-

NIL 6000 below the laser threshold. Insets of

(a) and (c): Peak emission intensity versus the

absorbed excitation fluence associated to each

PhC for a dye concentration of 5� 10�3 mol/l.

TABLE I. Comparison of the measured laser thresholds for the PhC band-

edge lasers with the lattice constants a¼ 500 nm (C1) and a¼ 580 nm (C3)

for the two dye concentrations.

Dye concentration C1 C3

5� 10�3 mol/l 3 lJ/mm2 3.9 lJ/mm2

2.5� 10�3 mol/l 3.6 lJ/mm2 4.7 lJ/mm2
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electric (TE) modes. Transverse magnetic (TM) modes are

expected to have higher losses because TM modes have a

lower effective refractive index and, therefore, a lower con-

finement than TE modes.

The three first band edges can be identified at the C
point with reduced frequencies of 0.836 (C1), 0.868 (C2),

and 1.021 (C3) (Figure 3(a)). The measured reduced frequen-

cies, which are the ratio of the lasing frequencies to the lat-

tice constant of the PhCs, were calculated from Figure 2 to

be 0.83, 0.87, and 1.03, respectively. Good agreement is

obtained between simulation and experiments for the deter-

mination of lasing frequencies at the C points.

Measured lasing thresholds for the two lattice constants

at the two dye concentrations are shown in Table I. To

understand the threshold difference at C1 and at C3 points,

the magnetic field distribution normal to the array, Hz, for

the band-edge mode at the two band edges was calculated by

the finite-difference time domain (FDTD) method using per-

fectly matched layer boundaries in all directions.

An amplitude profile of the two band-edge modes is

formed over the PhC area as shown on Figure 3(b). The black

circles in both pairs of the Figure 3(b) denote the air-hole

boundary and the area outside the circles corresponds to the

dye-doped polymer. Part of the mode energy at the C3 point

overlaps with the holes in the array where there is no gain me-

dium and consequently this energy is lost. The overlap of the

modes with the gain medium is calculated for the two modes

with the band edges at the C1 and C3 points. A 31.6% differ-

ence in the overlap is obtained for the two modes explaining

the higher threshold for the mode at the C3 point. This value is

slightly over estimated in comparison to the calculated differ-

ence of 23% between the lasing threshold at the C1 and the C3

points for the two dye concentrations (Table I) since the resid-

ual layer is not taking in account in the simulation.

FIG. 3. (a) Photonic band structure of a triangu-

lar lattice 2D air hole PhC calculated with a

Plane wave-basis frequency-domain method

for TE polarization where a is the lattice con-

stant and k is the wavelength. Hole radius is

R¼ 0.24a. The bands represent the gain band-

width of Rhodamine 6G for PhC lattice con-

stants a¼ 500 nm and a¼ 580 nm, respectively.

(b) Calculated Hz magnetic-field density at the

C1, C2, and C3 points.
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Finally, the lifetime of the band-edge laser was investi-

gated by recording repeatedly the lasing intensity at the C1

point of the 500 nm pitch PhCs in a vacuum cell. Figure 4

shows the lifetime of the laser as a function of time, at a rate

of 10 pulses per second at 8.5 lJ/mm2
, which corresponds to

2.8 times the laser threshold. The short lifetime of the 2D

PhC band-edge lasers is due to photobleaching of the Rhoda-

mine 6G. To increase the lifetime of the lasers, the dye mole-

cules need to be replaced by more robust luminescence

sources, for example, by semiconductor nanocrystals with

optical gain,23 embedded in the printable polymer.

In conclusion, we have demonstrated optically pumped

lasing in two-dimensional polymer photonic crystal band-

edge lasers operating in the visible range fabricated in a sin-

gle step by nanoimprint lithography. Lasing was identified at

three photonic band-edges (C1, C2, and C3). The measured

lasing frequencies are in good agreement with simulations.

The difference in lasing threshold between modes at the C1

and C3 band-edges can be predicted by calculating the lasing

mode overlap with the patterned area. We showed that nano-

imprint lithography is suitable for the fabrication of cost-

efficient, compact, and high quality surface emitting pho-

tonic crystal band-edge lasers. In the future, our work will

focus on the study of light conversion performance of nano-

imprinted band edge lasers and the characteristics of the

emitted laser beam.
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