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Abstract Potentially valuable sources of DNA have been
extracted from human colonic tissues and are retained in
biobanks throughout the world, and might be re-examined
to better understand host–microbe interactions in health and
disease. However, the published protocols for DNA
extraction typically used by gastroenterologists have not
been systematically compared in terms of their recovery of
the microbial fraction associated with colonic tissue. For
this reason, we examined how three different tissue DNA
extraction methods (the QIAGEN AllPrep DNA/RNA kit,
salting out and high molecular weight (HMW) methods of
DNA extraction) employed in past clinical trials, and the
repeated bead beating and column (RBB+C) method might
impact the recovery of microbial DNA from colonic tissue,
using a custom designed phylogenetic microarray for gut

bacteria and archaea. All four methods produced very
similar profiles of the microbial diversity, but there were
some differences in probe signal intensities, with the HMW
method producing stronger probe intensities for a subset of
the Firmicutes probes including Clostridium and Strepto-
coccus spp. Real-time PCR analysis revealed that the
HMW and RBB+C extracted DNA contained significantly
more DNA of Firmicutes origin and that the different DNA
extraction methods also gave variable results in terms of
host DNA recovery. All of the methods tested recovered
DNA from the archaeal community although there were
some differences in probe signal intensity. Based on these
findings, we conclude that while all four methods are
efficacious at releasing microbial DNA from biopsy tissue
samples, the HMW and RBB+C methods of DNA
extraction may release more DNA from some of the
Firmicutes bacteria associated with colonic tissue. Thus,
DNA archived in biobanks could be suitable for retrospec-
tive profiling analyses, provided the caveats with respect to
the DNA extraction method(s) used are taken into account.

Introduction

The microbiome resident in the human large intestine is
now widely recognised to provide a variety of physiological
and ecological functions relevant to host nutrition and well-
being [2, 18]. Furthermore, the gut microbiome has been
shown to undergo some dramatic structural changes in
obese and overweight subjects [54, 55], as well as in
persons diagnosed with inflammatory bowel diseases [6, 7,
57] or colorectal cancer [18, 49]. Much still remains to be
learned about the cause–effect relationships of microbiome
alteration and disease, as well as whether such information
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can be used for risk stratification and/or clinical manage-
ment of disease.

Microbial diversity in environmental samples has tradi-
tionally been assessed by low throughput polymerase chain
reaction (PCR)-based profiling methods such as the
analysis of terminal restriction fragment length polymor-
phisms (T-RFLP), denaturing gradient gel electrophoresis
(DGGE), or by the analysis of rRNA (rrs) gene clone
libraries. Despite method-specific and PCR-based biases
(e.g. primer selection and PCR amplification bias) these
methodologies have been widely applied due to their
relative simplicity and robustness. Of these methods, the
analysis of rrs clone libraries has been considered the “gold
standard”; however, this method becomes increasingly
laborious when complex communities or multiple samples
are processed. This is mainly due to the time-consuming
nature of the technique and the costly method of Sanger
DNA sequencing needed to provide precise taxonomic
assignment and coverage of the microbial community.
Conversely, both phylogenetic microarrays and next-
generation sequencing technologies now offer an efficient,
high throughput and affordable alternative to characterise
microbial diversity. These methods however are also prone
to PCR-based biases in addition to having their own
specific limitations. Phylogenetic microarrays require prior
information on community composition to facilitate probe
design and microarrays are consequently incapable of
identifying members of the community unless the appro-
priate probes are present. Moreover, poor probe design and/
or non-specific hybridisation(s) can lead to erroneous
determinations of microbial diversity. In contrast, next-
generation sequencing is susceptible to overestimating
microbial diversity due to inherent difficulties in accurately
sequencing DNA homopolymer repeat regions [23, 46].
This and the volume of sequences produced necessitate the
use of specialist software to process and analyse the
resultant data (e.g. [8, 45, 51]). Nonetheless, both technol-
ogies continue to be widely adopted due to their ability to
rapidly and sensitively profile microbial communities in
large numbers of complex samples.

DNA extraction is a key factor affecting any approach
for analysing microbial diversity. Numerous methods have
been described for the isolation of microbial DNA from
human stool samples, and like other fields of microbial
ecology, mechanical lysis by bead beating tends to be
favoured as such methods have been shown to be most
effective at capturing the microbial diversity (e.g. [13, 28,
37, 48, 59]). In that context, the repeated bead-beating and
column purification method (RBB+C) first described by Yu
and Morrison [58] has recently been shown by Salonen et
al. [48] to produce superior results in terms of DNA yield
and recovery of phylogenetic diversity from human stool
samples. In contrast, there does not yet appear to have been

a systematic assessment of how different DNA extraction
methods might influence the appraisal of the microbiome
adherent to the colonic mucosa. This remains an important
issue because several studies have shown that the mucosal
and faecal associated microbiota differ (e.g. [14, 27, 41,
60]). These differences might be relevant to better
understanding the role of the gut microbiota in human
health and disease because in contrast to faecal samples,
the colonic tissue and its associated microbial microenvi-
ronment can be sampled from where disease is manifestly
apparent.

There are many clinical biobanks that contain DNA
samples prepared from healthy and diseased colonic tissues
that may prove to be extremely valuable for microbiolog-
ical profiling. Unfortunately, the DNA extraction methods
used by clinicians do vary, both from clinic-to-clinic, as
well as from those used typically by environmental micro-
biologists and microbial ecologists. In particular, the
nucleic acid extraction methods that have traditionally been
employed by clinicians with colonic tissue: viz. the high
molecular weight and salting out methods described by
Marmur [30] and Miller et al. [35], respectively; and more
recently, the QIAGEN AllPrep DNA/RNA kit for nucleic
acid extraction, do not employ a bead-beating step. These
methods were/are primarily used to recover host DNA/
RNA and often without the anticipation that the same
samples might also be analysed with respect to gut
microbiome structure–function relationships. In particular,
these DNA samples could facilitate powerful cross-
sectional and inception-based studies of microbiome struc-
ture that might add to the host-based measurements already
collected and published; if it can first be confirmed that
microbial DNA was also effectively released by the DNA
extraction methods typically (or historically) used with
colonic tissue samples.

With this background, the aim of this study was to
evaluate how well the DNA extraction methods routinely
used by gastroenterologists compare with the RBB+C
protocol in revealing the microbial diversity associated
with colonic tissue samples. Similar to the studies
described by Salonen et al. [48], we have used a
custom-designed gut microbiome specific phylogenetic
microarray (the Aus-HIT chip) recently shown to produce
a rapid and accurate assessment of gut microbial diversity
[21, 36].

Materials and Methods

Human Subject and Tissue Sampling

A colonic tissue sample was obtained from a 73-year-old
male subject being examined for colorectal cancer at the
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Queensland Institute for Medical Research, Australia. The
colorectum was prepared with 4 L of Colonlytely PEG-
based preparation solution taken orally. The site of tissue
resection was clean of any overlying macroscopic adherent
fluid or luminal fluid and the tissue was immediately
examined post-operatively; with an area of the visually
normal mucosa placed in a sterile specimen container and
snap frozen in liquid nitrogen. The subject provided
informed consent and the use of the tissue was approved
by the QIMR ethical board.

Tissue DNA Extraction and Analysis

The tissue was thawed on ice and then cut into sections
(≤30 mg tissue) with a sterile scalpel, to resemble the size
of punch biopsy samples. These tissue samples were
subject to one of three methods of DNA extraction typically
or historically used by research gastroenterologists with up
to seven subsamples processed per method. With the
exception of the RBB+C samples, the tissue subsections
were homogenised using an Ultra Thurax SP4 homogeniser
at speed setting 4 until homogenous or for a maximum of
20 s. The QIAGEN AllPrep DNA/RNA Mini Preparation
Kit was used as described by the manufacturer’s instruction
(QIAGEN) with the tissue samples homogenised in 600 μl
of QIAGEN RLT buffer. The salting out method of DNA
extraction followed the methods described by Miller et al.
[35] except that a miniprep adapted protocol was followed.
A miniprep protocol adapted from the high molecular
weight DNA extraction method (HMW method) described
by Marmur [30] was also used. Briefly, the tissue
subsample was homogenised in 600 μl of cell lysis buffer
(6 mM Tris–HCl pH 8, 100 mM EDTA, 1 M NaCl) and
incubated at 75°C for 10 min to inactivate nucleases.
Following cooling to ambient temperature, 15 μl of
lysozyme (200 mg/ml stock) and 1.5 μl of mutanolysin
(20 U/μl) were added and the sample was then incubated at
37°C overnight for maximum lysis. Following the incuba-
tion, 30 μl of 10% sodium laurylsarcosine and 7.5 μl of
proteinase K (20 mg/ml) were added and the sample was
incubated at 55°C for 30 min. The sample was extracted
with phenol/chloroform/isoamylalcohol (25:24:1) and the
residual contaminating phenol/chloroform was subsequent-
ly removed by a chloroform/isoamylalcohol (24:1) extrac-
tion. The aqueous phase was removed to a fresh microfuge
tube and the DNA was precipitated with 3 M sodium
acetate (pH 5.2) and isopropanol. The DNA pellet was
washed with 70% ethanol and the DNA was air dried and
resuspended in TE buffer. The fourth method employed
was the RBB+C method as described by Yu and Morrison
[58]. All of the DNA samples were washed using a
Microcon column (Millipore) to remove PCR inhibitors
and quantified using a NanoDrop ND-1000. The integrity

of the DNA was determined by electrophoresis using a
0.7% w/v agarose gel followed by post-staining using
SYBR® Safe DNA gel stain according to the manufac-
turer’s instructions (Invitrogen).

Generation and Fluorescent Labelling of cRNA

The Bacteria and Archaea rrs genes were PCR amplified
using 100 ng of a single DNA sample per extraction
method and primers 4Fa, 27F and 1492-T7R (Table 1). The
PCR reactions were performed in triplicate and pooled to
reduce the effect of amplification biases. The PCR master
mix included 200 nM of each primer, 200 μM of each
deoxyribonucleotide, 1× PCR buffer, 3 mM MgCl2 and
0.5 U Native Taq DNA polymerase (Invitrogen). The PCR
reaction was initiated by incubating the mixtures at 95°C
for 5 min, and followed by 30 cycles of 94°C for 30 s, 58°C
for 30 s and 72°C for 90 s and 1 cycle of 72°C for 5 min.
To eliminate any aberrant amplicons that can be produced
by primers 27F and 1492R during PCR, as shown by
Osborne et al. [40], all of the PCR reactions were subjected
to agarose gel electrophoresis and the rrs amplicons
(~1.5 kb) were gel extracted using a QIAGEN Minelute
kit. As an internal standard, the mitochondrial rrs gene was
PCR amplified using human DNA as the template and
primers MitoF and MitoR-T7 (Table 1). The PCR con-
ditions were the same as those described above except that
the elongation step was performed at 72°C for 30 s. Where
necessary, the samples were concentrated using Pellet Paint
Co-Precipitant (Novagen) as directed by the manufacturer.

The gel extracted rrs amplicons were quantified using a
NanoDrop ND-1000, and then 500 ng aliquots of the DNA
were used as the template for the in vitro synthesis of
single-stranded RNA (cRNA). We chose to produce cRNA
for hybridization to the microarray because Palmer et al.
[43] had previously reported that cRNA allowed signifi-
cantly enhanced hybridisation specificity, in comparison to
the use of dsDNA. The cRNA was produced using the
MEGAScript T7 in vitro transcription kit (Ambion) and
purified using the MEGAclear kit (Ambion) as described
by Kang et al. [21].

cRNA Labelling, Microarray Hybridization
and Image Capture

The Aus-HIT chip and associated methods are described in
detail by Kang et al. [21] and the relevant microarray probe
and other methodological details, together with the hybrid-
isation results, are also accessible at the GEO database
(http://www.ncbi.nlm.nih.gov/geo/; GPL9353 and
GSE18420 respectively). In brief detail, 500 ng of the rrs
cRNA sample was mixed with 7 ng of mitochondrial cRNA
(as an internal standard) and fragmented and labelled using

DNA Extraction and Microbial Diversity Analysis 355

http://www.ncbi.nlm.nih.gov/geo/


the Label IT μArray Cy5 labelling kit (Mirus) following the
manufacturer’s specifications. Four replicate hybridisations
were performed for each labelled cRNA sample, and the
microarray slides were scanned using an Axon Genepix
4000A microarray scanner (Axon Instruments, Union City,
CA, USA). The images obtained were analysed using
GenePix Pro 6.0 software (Axon Instruments) and probe
signal intensities were quantified as the difference between
foreground and background intensities at 635 nm.

Data Processing and Analysis

The raw signal data was processed using the Genespring
GX10 software (Agilent Technologies) and the three
hybridisation profiles showing the most even intensity
distributions for each extraction method were selected for
normalisation. Intensity values were transformed to log2,
normalised using the quantile normalisation method and
probes not giving higher intensities than the negative
controls in at least all replicates of one extraction method
were discarded. The profiles obtained were then analysed
with a multivariate method derived from numerical ecolo-
gy: between group analysis (BGA) applied to correspon-
dence analysis [10, 15], using the R package ade4 [12]. A
Monte Carlo permutation test was performed to assess the
significance of the constraint being evaluated. Moreover,
the stability of gene contributions to the modelled con-
straint was assessed using the multistab package [4]. Only

stable probes (p<0.05) with a greater contribution to the
models than the spiked controls were considered as being
affected by extraction method.

Real-Time PCR Analysis

Quantitative real-time PCR reactions were performed using
five independent DNA samples prepared using each of the
four methods described above (n=20). A dilution series of
the template DNA was constructed and used to identify
non-specific amplification and to calculate amplification
efficiency using the primer sets described in Table 1. Each
PCR reaction mixture contained 10 ng of DNA template,
200 nM of each primer and 1X iQ SYBR Green Supermix
(BioRad). Each reaction was dispensed, in quadruplicate,
into 5 μl aliquots in a 384-well plate using a Biomek 2000
automated workstation (Beckman). The real-time PCR
reactions were performed using a 7900HT sequence
detection system (Applied Biosystems) and the following
conditions: one cycle of 95°C for 10 min, 40 cycles of 95°C
for 15 s and 58°C for 30 s followed by a dissociation curve
cycle of 95°C for 15 s, 60°C for 15 s and 95°C for 15 s.
Individual reactions showing aberrant amplification profiles
were discarded from further analysis. The data obtained
from each individual reaction and the amplification effi-
ciencies derived from the dilution series were used to
determine the relative quantification of the various DNA
targets. Briefly, the data for each specific microbial group

Table 1 Primers used in this study

Primer
name

Primer target(s) Primer sequence 5′-3′ Approximate
amplicon size

Reference

4Fa Universal rrs primer
(archaea)

TCCCGGTTGATCCTGCCRG – [19]

27F Universal rrs primer
(bacteria)

AGAGTTTGATCMTGGCTCAG – [24]

1492-T7Ra Universal rrs primer
(bacteria/archaea)

TCTAATACGACTCACTATAGGGGGYTACCTTGTTACGACTT – [24]

MitoF Human mitochondrial
specific rrs primer

TACTACCAGACAACCTTAGC – [21]

MitoR-T7a TCTAATACGACTCACTATAGGGGTTTCGGGGGTCTTAGCTTT –

AllBac296f Bacteroides spp. specific
rrs primer

GAGAGGAAGGTCCCCCAC 106 bpb [26]
AllBac412r CGCTACTTGGCTGGTTCAG

PreGen4F Prevotella spp. specific rrs
primer

GGTTCTGAGAGGAAGGTCCCC 121 bp [52]
PreGen4R TCCTGCACGCTACTTGGCTG

StrepGenF Streptococcus spp. specific
rrs primer

CGACGATACATAGCCGACCTGAG 102 bp [9]
StrepGenR TCCATTGCCGAAGATTCCCTACTG

g-Ccoc-F Clostridium coccoides
group specific rrs primer

AAATGACGGTACCTGACTAA 440 bp [31]
g-Ccoc-R CTTTGAGTTTCATTCTTGCGAA

1114F Universal rrs primer
(bacteria)

CGGCAACGAGCGCAACCC 130 bp [11]
1221R CCATTGTAGCACGTGTGTAGCC

β-act-F β-actin specific primer CCTCGCCTTTGCCGA 171 bp [3]
β-act-R TGGTGCCTGGGGCG

a The 1492R and Mito-R based primers were modified to include a T7 promoter sequence (italicised)
b Base pairs
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was normalised by the Livak method [29] using Bacteria-
specific rrs gene primers (Table 1) as the reference; and
differences were expressed with reference to the data
obtained using the DNA samples prepared with the
QIAGEN AllPrep DNA/RNA kit. The recovery of host
(human) DNA was assessed by quantitative real-time PCR
targeting the β-actin gene using specific primers (Table 1).

Results

Extraction of DNA from Human Colonic Tissue Samples

Three of the four DNA extraction methods produced similar
yields of total DNA. The HMW method recovered the most
DNA (1,578.0±573.6 ng DNA per mg tissue) followed by
the salting out (1,258.5±570.7 ng DNA per mg tissue) and
RBB+C (1,129.3±302.3 ng DNA per mg tissue). However
in our hands, the QIAGEN AllPrep DNA/RNA method
recovered much less total DNA (282.7±201.4 ng DNA per
mg tissue). The A260/A280 ratio of the DNA extractions
were all similar (HMW method 1.89±0.01; salting out
method 1.83±0.03; RBB+C method 1.89±0.01; QIAGEN
AllPrep DNA/RNA method 1.84±0.06) indicating that the
preparations were comparably pure. Agarose gel electropho-
resis revealed that the majority of the DNA was in a high
molecular weight form (>10 kb) and with no significant
shearing observed below 1.5 kb irrespective of the DNA
extraction method used (Fig. 1). Taken together, the results
suggest that all four methods provide high quality DNA
suitable for downstream processing.

Aus-HIT Chip-Based Characterisation of the Extracted
DNA Samples

We used the Aus-HIT chip to determine the ability of the
individual DNA extraction methods to capture the micro-

bial diversity associated with the colonic tissue samples.
The hybridization profiles were essentially identical, except
for a small percentage (<10%) of the probes that gave rise
to statistically significant differences in signal intensity (p<
0.05). These findings suggest that while the efficacy of the
four DNA extractions methods examined here are similar,
and will produce qualitatively similar profiles of microbial
diversity from mucosal DNA samples, there does appear to
be some differences between the extraction methods in
terms of DNA release.

The microarray hybridization data produced for each DNA
extraction method were subjected to a BGA in order to better
evaluate these preliminary findings and to further dissect the
effect of the individual extraction methods on DNA recovery
from different microbial groups. The principal axes of BGA
are defined as the linear combination of probes that maximises
the between-group variance allowing the identification of
groups of probes that discriminate between classes of samples.
The results of this analysis are illustrated in Fig. 2a and reveal
that the main axis of variation was characterised by a general
inverse relationships between several Bacteroidetes and
Firmicutes group-specific probes. The analysis revealed that
the QIAGEN AllPrep DNA/RNA and salting out methods
produced profiles most similar to that of the RBB+C
method; but when compared to the RBB+C method the
probe signal intensities for some of the Bacteroides and
Prevotella spp. probes were stronger; and weaker for some
of the Veillonella and Streptococcus spp.-based probes
(Fig. 2b). Interestingly, the profile arising from DNA
extracted using the HMW method was separated from the
others by the second principal axis, because it provided the
strongest signals for a small number of Clostridium-specific
probes, as well as Streptococcus spp.-based probes.

We also examined the ability of the individual DNA
extraction methods to detect the archaeal diversity
associated with the colonic tissue. There were no
statistically significant differences in the hybridisation
profiles for methanogenic archaea for all four DNA
extraction methods tested (p>0.05). Similar to previous
studies [14, 42], we detected the presence of Methano-
brevibacter smithii with colonic tissue but in addition we
also detected the presence of Methanosaeta spp. and
Methanocaldococcus spp. None of the DNA extracts
produced a detectable signal for Methanosphaera spp.
We also observed positive signals for some non-
methanogenic archaea. The DNA extracts produced by
the HMW method resulted in significantly stronger
hybridization signals for probes targeting the euryarch-
aeote Halobacterium spp. in contrast to the other three
methods (p<0.05); and the salting out method resulted in a
significantly stronger hybridization signals for the cren-
archaeote Sulfobus spp. in contrast to the QIAGEN
AllPrep DNA/RNA and RBB+C methods (p<0.05).

Figure 1 Characterisation of
extracted DNA as determined
by agarose gel (0.7%)
electrophoresis. a QIAGEN
AllPrep DNA/RNA Kit; b salt-
ing out method; c HMW
method; d RBB+C method
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Real-Time PCR Analysis of Colonic Tissue-Extracted DNA

To further evaluate the microarray-based observations,
several of the bacterial groups identified by the BGA
analysis to be variant with respect to DNA extraction
method were subjected to real-time PCR analysis. The real-
time PCR analyses confirmed that DNA extracted using
the QIAGEN AllPrep DNA/RNA kit and salting out
methods do contain a greater relative amount of
microbial DNA representing Bacteroides spp. and Pre-
votella spp. compared to DNA extracted using the HMW
and RBB+C methods (p<0.05, Fig. 3). Similarly, the
DNA extracted using the HMW and RBB+C methods
were found to contain a greater amount of DNA
representing Streptococcus spp. and the Clostridium
coccoides group (p<0.05), although the difference be-
tween the HMW and salting out methods for Streptococ-
cus spp. was marginal (p<0.07). These findings suggest
that the variation in probe intensities observed for the
microarray data were as a consequence of the DNA
extraction method per se, rather than any bias introduced
during the PCR amplification of the rrs genes or in the

production of cRNA for the microarray analysis. In
summation, we interpret these findings as showing that
the DNA extraction method used with mucosal tissue does
have a subtle impact on the recovery of microbial DNA;
with the RBB+C and HMW methods of DNA extraction
releasing more DNA from some Firmicutes bacteria.

We also used real-time PCR-targeting the β-actin gene
as a measure of the host DNA recovered by the different
extraction methods. Interestingly, the salting out and
HMW methods of DNA extraction recovered significant-
ly more host DNA (p<0.05) than the QIAGEN AllPrep
DNA/RNA and RBB+C methods (Fig. 3). The latter
methods use nucleic acid binding columns and it may be
that the smaller bacterial chromosomes and/or DNA
fragments generated from the homogenisation or bead
beating process are able to bind more efficiently to the
columns, and are thus enriched. However, despite the
greater amounts of “background” host DNA in these
samples, the concordance between the real-time PCR and
microarray results suggests that the amount of host DNA
present did not adversely impact microbial DNA extrac-
tion or its amplification.

Figure 2 a Discrimination of the microarray profiles derived from the
four different DNA extraction methods using BGA applied to
correspondence analysis. The most discriminant bacterial probes
occurring at least twice at the genus level are plotted and the relative
positions of objects (probes and profiles) provide a measure of the
strength of their association. The BGA analysis indicated that the
different DNA extraction methods employed had a significant effect
on the microbial community profiles generated, accounting for most
of the variance found (65.9%, p<0.05). The axes represent 60.2% (X)
and 5.7% (Y) of the variation. The three individual hybridisations per
DNA extraction method are shown. b Heat map of the probes
identified in a with hierarchical clustering based on DNA extraction

method. a QIAGEN AllPrep DNA/RNA Kit, b salting out method, c
HMW method, and d RBB+C method of DNA extraction. The probe
names are defined as follows: BctAci10 (Bacteroides acidofaciens);
BctCacca (Bacteroides caccae); BactePutre-439 (Bacteroides putredi-
nis); ClosBife-134 (Clostridium bifermentans); CloGhoni-992 (Clos-
tridium ghoni); ClosNeop-75 (Clostridium neopropionicum);
CloSord-181 (Clostridium sordellii); PevRum10 (Prevotella rumini-
cola); Prevo (Prevotella sp.); PevTann3 (Prevotella tannerae);
PrevoZoogl-167 (Prevotella zoogleoformans); StrePneu-195 (Strepto-
coccus pneumoniae); Stoco-1237 (Streptococcus sp.); VeillAtyp-576
(Veillonella atypical); VeillDisp-442 (Veillonella dispar); VeillParv-
450 (Veillonella parvula)
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Discussion

The goal of this study was to establish whether the method
of DNA extraction used with mucosal tissue samples may
impact the recovery and representation of the microbial
diversity associated with that tissue. Previous studies have
described the effects from various DNA extraction proto-
cols on microbial diversity from stool samples as assessed
by DGGE [58, 59], T-RFLP [37] and PCR [33]. Here, we
applied the Aus-HIT chip to characterise the effects from
different DNA extraction methods on the recoverable
microbial diversity associated with colonic tissue.

Our results demonstrate that all four methods of DNA
extraction are efficacious in releasing DNA from the
microbial populations associated with the colonic tissue;
and produce comparably similar profiles of community
diversity. Nonetheless, a small percentage of probes were
identified that gave statistically significant differences in
signal intensity and based on the results presented here,
these differences arise because the QIAGEN AllPrep DNA/
RNA and salting out methods were not as efficient as the
HMW or RBB+C methods for recovering DNA from some
of the Firmicutes like Veillonella, Streptococcus and
Clostridium spp. These differences in extraction efficiencies
observed are likely due to the mechanism of lysis. Lysis by
the QIAGEN AllPrep DNA/RNA or salting out methods
are relatively gentle, especially when compared to the
extensive enzymatic treatment and chemical based lysis

used with the HMW method, and the mechanical- and
chemical-based lysis used with the RBB+C method. These
differences in lysis efficiency are most likely to be observed
with bacteria that possess a cell wall ultrastructure that is
especially difficult to lyse and/or mechanically disrupt. The
differences between the HMW and RBB+C profiles for the
Firmicutes-based probes are interesting and assuming that
lysis by the RBB+C method is relatively non-discriminatory
this suggests that the enzymatic based lysis inherent to the
HMW method may be prone to bias.

Salonen et al. [48] also reported a higher proportion of
Bacteroidetes and a lower proportion of Clostridium cluster
XIV and Actinobacteria with DNA recovered from faeces
using a QIAGEN Stool DNA Mini kit. The observations by
Salonen et al. [48] are consistent with those of other studies
(e.g. [14, 22]) and they hypothesised that the QIAGEN
Stool DNA Mini kit was able to extract DNA more readily
from the Gram-negative population of the human faecal
community resulting in an apparent overestimation of their
prevalence in the sample. In a separate study characterising
the effectiveness of DNA recovery from faecal samples,
Wang et al. [56] concluded that DNA was released from
Gram-negative bacteria with much higher efficiency (80–
100%) than from Gram-positive bacteria (1–20%). Other
studies have also reported similar variations in DNA
extraction efficiency (e.g. [33, 39]) and taken together this
further confirms our observation with the Aus-HIT chip that
the mechanism of DNA extraction can significantly impact
the recovery of microbial diversity leading to differential
representation of particular phylogenetic groups.

We found that all four DNA extraction methods were
broadly comparable in detecting the archaeal diversity
associated with the colonic tissue with only slight variations
observed between the methods. The predominant human
methanogenic gut archaea, M. smithii was detectable by all
four extraction methods; however, in contrast Methanos-
phaera spp. was not detected. Recent studies have revealed
that the human colonic methanogenic archaeal community
may be more diverse than previously estimated [16, 34, 38,
50] and in addition to M. smithii, we also detected
Methanosaeta spp. and Methanocaldococcus spp. in asso-
ciation with the tissue sample. Methanosaeta spp. has not
previously been associated with human samples; however,
it and the broader Methanosaetacae have been detected in
anaerobic digesters containing anaerobic sewage sludge or
a combination of anaerobic sewage sludge with bovine
faecal material as an inoculum [17, 32]. Oxley et al. [42]
also identified Methanosaeta spp. rrs gene sequences
(≥99% similarity) in association with table salt suggesting
a possible dietary source for this archaea. In contrast, the
Methanococcacae have previously been detected in rumen
gastrointestinal environments by probe-based approaches,
but these observations remain to be conclusively confirmed

Figure 3 Real-time PCR analysis of resected colonic tissue extracted
DNA. Data for each specific group was normalised by the Livak
method [29] using Bacteria-specific rrs gene primers [11]; bars
represent the average fold change in relation to the QIAGEN AllPrep
DNA/RNA sample. Significant differences (p<0.05) between DNA
extraction methods identified by real time PCR results targeting
specific bacterial groups are annotated by an asterisk although the
difference between the HMWand salting-out methods for Streptococci
spp. is marginal (p<0.07)
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[20]. Nonetheless, putative Methanococcales and Methano-
sarcinales DNA sequences were identified in a metagenomic
dataset produced from human faecal samples [16]. We also
detected non-methanogenic archaea in association with the
colonic tissue, in particular Halobacterium spp. and Sulfolo-
bus spp. These and other phylogenetically similar archaea
have previously been shown to be associated with human
faecal and/or tissue samples [16, 38, 42, 47]. Taken together,
this suggests that the archaeal diversity within the human
colon may potentially have been significantly underestimated
and a deep sequencing approach targeting the human colonic
archaea may provide further insight into the phylogenetic
diversity and ecophysiological role of this community.

Recent observations suggest that there is a microbial
phylogenetic core that is associated with human faecal
samples [44, 53]. In addition, a recent study revealed the
presence of a faecal-associated core measurable microbiota
in mice; the abundance of which is shaped by both
environmental and host genetic factors [5]. The mucosal
and faecal associated microbiota have been shown to differ
and it remains to be determined if a similar or distinct
mucosal associated phylogenetic core exists. It may be that
in addition to genetic susceptibility, host-mediated perturba-
tions in the mucosal microbiota also contribute to disease
propensity. The Aus-HIT chip, as do the other HIT micro-
arrays, offers a useful tool complementary to next generation
sequencing methods for this type of diversity analysis.

Conclusion

Our results show that while all four methods are equally
efficacious at releasing microbial DNA, the HMW and
RBB+C methods of DNA extraction were more efficient in
extracting DNA from some of the Firmicutes bacteria
associated with colonic tissue. Importantly, these results
also suggest that tissue DNA extracts held in archival
biobanks may be amenable to retrospective microbial
diversity analyses provided that comparisons are restricted
to samples subjected to the same DNA extraction method.
The purity of the archived DNA sample(s), the storage
temperature and the effects of oxidative damage are also
important considerations prior to commencing detailed
analyses [1, 25].
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