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[1] Field evidences of the nonlinear resonant coupling between two adjacent basins are
found in two elongated inlets in the region of Ciutadella, Menorca Island, in the western
Mediterranean. Sea level measurements reveal different amplification responses during
calm periods (when a linear approach is justified) and during ‘‘rissaga’’ events (when sea
level oscillations inside the bays reach amplitudes comparable to water depth and
nonlinear effects are expected to play a significant role). These differences are then
interpreted as the observational manifestation of the nonlinear coupling between two
adjacent inlets. This phenomenon is studied using a simplified analytical model consisting
of two parallel and rectangular adjacent inlets with constant depth. Weakly nonlinear and
weakly dispersive waves are considered. Therefore Boussinesq equations may be
employed for the analysis. The problem is further simplified by assuming that the waves
outside the bays are linear so that the wave fields inside the bays can be described by a
system of coupled nonlinear two-point boundary value problems with complex
coefficients for each harmonic. The nonlinear system is solved numerically, and the
solutions are used to investigate the coupling under linear and nonlinear wave
conditions. INDEX TERMS: 4546 Oceanography: Physical: Nearshore processes; 4203 Oceanography:

General: Analytical modeling; 4560 Oceanography: Physical: Surface waves and tides (1255); 4219

Oceanography: General: Continental shelf processes; 4564 Oceanography: Physical: Tsunamis and storm

surges; KEYWORDS: nonlinear coupling, Boussinesq equations, western Mediterranean
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1. Introduction

[2] Harbor resonance occurs when one of the natural
modes of the harbor is excited by a forcing mechanism,
including underwater earthquakes, landslides, atmospheric
pressure disturbances and infragravity waves. Large ampli-
tude wave motions inside a harbor during a resonance event
could cause severe damages to moored vessels and impair
marine operations. For these important practical reasons,
many research works have been performed to improve our
understanding of the fundamental features of harbor reso-
nance [Miles, 1994]. Most of these research works are based
on linear wave theories and corresponding numerical mod-
els have also been developed for analyzing wave oscilla-
tions inside a harbor with complex geometry [Panchang
and Demirbilek, 2001]. Solutions based on a linear wave
theory are very useful in determining the natural modes of a

given harbor configuration and in estimating the magnitude
of harbor responses. Obviously, linear wave theories break
down near the resonance frequencies, where the wave
amplitudes could increase by an order of magnitude.
[3] To investigate the nonlinear effects on harbor oscil-

lations, Rogers and Mei [1978] (hereinafter referred to as
R&M) proposed a matched asymptotic method to obtain
numerical solutions for wave oscillations in a single rect-
angular bay based on the Boussinesq equations. In their
analysis the wave field in the ocean is approximated by a
linear theory. They demonstrated, with the support of their
own experimental data, that through the nonlinearity, large
higher harmonics are generated when the first harmonic of
the incident waves is resonated inside the bay. More
recently, Woo and Liu [2004a, 2004b] developed a transient
finite element model based on the modified Boussinesq
equations [Nwogu, 1993] and revisited R&M’s problem.
They confirmed that the approximations adopted in R&M,
such as the linearization of the wave field outside the bay,
are acceptable. The finite element solutions seem to agree
slightly better with the experimental data for the second and
third harmonics.
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[4] In many places around the world, one can easily find
locations where two bays are located very close to each
other. For example, Ciutadella and Platja Gran are two
elongated bays on the west coast of Menorca, on the
Balearic Islands in the western Mediterranean (Figure 1).
Large oscillations (up to 3 m in wave height) are periodi-
cally observed in both bays. These large oscillations, locally
known as ‘rissaga’, have been linked to the passage of
atmospheric pressure disturbances, which generate long
ocean waves on the continental shelf surrounding the
islands that, in turn, force the resonance response in these
bays [Tintoré et al., 1988; Monserrat et al., 1991; Gomis et
al., 1993; Rabinovich and Monserrat, 1998]. Using linear
shallow water equations, Liu et al. [2003, 2004] examined
the coupled oscillations in these bays. They selected a
background period of relatively weak bay oscillations, when
the significant wave heights inside the bays are in the order
of magnitude of few centimeters and the measured wave
heights on the shelf are one order of magnitude smaller.
Considering the wave period of the lowest-resonance mode
(about 10 min), the corresponding wavelength is about
10 km in the water depth of 30 m (on the shelf) and 4 km
in the water depth of 5.5 m (inside the bays), respectively.
Therefore the wave system studied by Liu et al. [2003,
2004], even under the resonance condition, was indeed
linear. Their results, which agree with many features
observed in the field data, show that the coupling is
primarily due to the radiated waves propagating from one
bay to the other. The coupling effects become stronger when
two bays are closer. However, during a rissaga event,
oscillations inside the bays may reach wave heights of more
than 3 meters in the averaged water depth of 5.5 meter and,
therefore nonlinear effects should play a significant role.
[5] The main goal of this paper is to examine theoreti-

cally the nonlinear coupling of two adjacent bays and to use
the model as a tool to interpret the nature of the nonlinear
coupling of Ciutadella and Platja Gran during a rissaga
event. To simplify the problem, we shall assume that both
bays are elongated rectangles, of constant depth and per-
pendicular to the coastline. We shall extend R&M’s ap-
proach to the new system and reduce the Boussinesq
equations to a set of coupled two-point boundary value

problems for each harmonic motion in each bay. A numer-
ical algorithm is developed to solve the system of nonlinear
second-order boundary value problems. Present numerical
results are first compared with R&M’s numerical results and
experimental data for a single bay. The discrepancies among
the results are discussed. The response curves for the first
three harmonics, evaluated at the end of the bay, are also
obtained for a range of incident frequencies. The effects of
nonlinearity on the resonance of higher harmonics are
illustrated. Solutions for the two bays system, in which
one bay length is twice the other one, are later obtained and
discussed. The response curves for each harmonic in each
bay are also calculated. Special attention is focused on the
effects of nonlinearity and resonance coupling. Amplifica-
tion curves are computed and compared with data in the
region of Ciutadella under almost linear and fully nonlinear
conditions.

2. Field Evidence

[6] The LAST-97 field experiment was carried out in the
region of Ciutadella from June to September 1997. A set of
bottom pressure recorders and microbarographs was
deployed. Bottom pressure recorders were installed inside
the Ciutadella Inlet, one near the middle (M_0) and the
other one close to the end of the inlet (M_2), near the
middle of the neighboring inlet of Platja Gran (M_1) and on
the outer shelf of Menorca Island (bottom pressure gauges
MW1, MW2, MW3 and MW4) (see Figure 1). All bottom
pressure gauges recorded continuously for 30 seconds s
intervals and stored the data with a sampling interval Dt =
1 min.
[7] During the field observation period, the instruments

located in Ciutadella Inlet and over the shelf captured
several rissaga events. However, M_1 instrument was
temporally out of order during the first part of the field
observation and only one of these events was simulta-
neously recorded in Platja Gran. In addition, some periods
of extremely low activity, with significant wave heights
inside the inlets in the order of magnitude of only few
centimeters, were also identified.
[8] The most energetic events were selected and analyzed

by Monserrat et al. [1998] and compared with a period of
low activities (background) by using spectral techniques.
Liu et al. [2003, 2004] further investigated the background
case showing evidences of resonant linear coupling between
the inlets.
[9] Here, the most energetic event, simultaneously

recorded in both inlets, is selected and compared with a
period of background oscillations. In order to increase the
confidence of analyses, an additional event, representing an
intermediate energetic state is also considered. The three
events have been selected with the same duration interval of
5760 min (4 days) and are (1) background: 27–31 July,
maximum wave height 5 cm; (2) rissaga: 21–25 July,
maximum wave height 125 cm; and (3) intermediate: 16–
20 August, maximum wave height 25 cm.
[10] The analysis of these episodes is carried out by

computing the spectral contents for each instrument, inside
Ciutadella and Platja Gran Inlets and on the shelf. A
Kaiser-Bessel window of 512 points with half-window
overlapping was used for all the computations [Emery

Figure 1. Geometry and location of Ciutadella and Platja
Gran, Menorca Island, in the western Mediterranean and
location of the instruments deployed during LAST-97.
Depths are labeled in meters.
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and Thomson, 1997], resulting in 42 degrees of freedom
(dof ).
[11] In order to filter out the shelf resonance character-

istics affecting the instruments inside the inlets, the spectra
at the inlet sites are divided by the spectrum at one of the
instruments on the shelf. The square root of this ratio may
be considered as a good estimation of the inlet admittance
function, i.e., as the relative amplification of the waves,
arriving from the shelf, inside the inlet. Instrument MW4 is
selected as the representative of shelf oscillations. Although
it is located relatively far away from the inlet entrances it is
expected that this instrument will be less affected by
radiated waves from the inlets.
[12] The amplification functions at M_1 and M_2 during

the rissaga and the intermediate episodes are compared
with those during the background and are shown in
Figure 2. The background responses have been analyzed
in detail by Liu et al. [2003, 2004]. The amplifications are
clearly different in the two inlets. The fundamental and
first resonant periods for Ciutadella are 10.5 and 4.1 min,
while the fundamental and first resonant periods for Platja
Gran are 5.7 and 2.2 min. Some other minor disturbances
of the amplification curves, located at the resonance
frequencies of the neighboring inlet are also clear. Liu et

al. [2003, 2004] called the presence of these disturbances
in the background case as coupled modes. The gross
behavior of the amplification for all three cases is similar;
in particular, resonant peaks are located at the same
frequencies. However, the magnitudes of the amplification
peaks are different. The amplification at the fundamental
mode in Ciutadella is smaller during rissaga, on the other
hand, the amplification of the fundamental mode in Platja
Gran is considerably greater. Higher-order resonant modes
in both inlets increase their magnitudes during rissaga.
Similar features are also observed for the intermediate
case, although the changes of the fundamental mode
amplifications are less evident. It is suggested this is due
to the fact that the fundamental resonant mode in Platja
Gran (T0 = 5.7 min), is close to the second harmonic of
the Ciutadella fundamental resonant mode (T0 = 10.5 min).
The detailed discussion and explanation of this feature is
the main thrust of the paper.

3. Analytical Formulation

[13] The inlet geometry for Ciutadella and Platja Gran
can be approximated by two rectangular and parallel bays
with constant water depth h. We consider two adjacent bays

Figure 2. Relative amplification at (a) Ciutadella and (b) Platja Gran computed for the background
period (shaded lines) and rissaga (black lines). The same background episode is compared with the
intermediate case at (c) Ciutadella and (d) Platja Gran. Major peaks are labeled with the corresponding
period in minutes.
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with lengths, l1 and l2, and width 2b1 and 2b2, respectively.
The coastline is a straight line and coincides with the y axis.
Both bays are perpendicular to the coast and are aligned
with the x axis. The water depth is constant everywhere (see
Figure 3). An incident wave train propagates normally to
the coast from x ! 1. Adopting the following dimension-
less variables:

t0 ¼ wt; x0; y0ð Þ ¼ x; yð Þ wffiffiffiffiffi
gh

p ; z0 ¼ z

h
; z0 ¼ z

h
; u0 ¼ uffiffiffiffiffi

gh
p ; ð1Þ

in which w is the characteristic wave frequency, and g the
gravity acceleration. The well-known Boussinesq equations
for free surface displacement, z, and horizontal velocity
vector, u, can be written in the dimensionless form as
follows:

zt þr 
 uþr 
 zuð Þ ¼ 0 ð2Þ

ut þrzþ 1

2
ru2 þ 1

3
m2rztt ¼ 0; ð3Þ

in which m2 = w2h/g � 1 represents the frequency
dispersion. In the above equations the primes have been
dropped for all dimensionless variables. These equations
have been derived assuming that earth rotation is negligible
and ignoring frictional effects. We should also point out that
the dimensionless free surface elevation, z, and velocity, u,
are in the order of O(e), representing the nonlinearity

parameter. The Boussinesq approximation requires that both
e and m2 are small and are in the same order of magnitude.
The errors of the above equations are of the order of O(e2,
em2, e4).
[14] Because of the nonlinearity, the bay responses are

expected to contain higher harmonics. Therefore we seek
for the following solution forms:

z ¼ 1

2

X
n

zn x; yð Þe�int; u ¼ 1

2

X
n

un x; yð Þe�int; ð4Þ

where n = 1, 2, 3, . . ., z�n and u�n are the complex conjugates
of zn and un, respectively. Substituting equation (4) into
equations (2) and (3) results in a set of governing equations
for each harmonic

�inzn þr 
 un þ
1

2

X
s

r 
 zsun�sð Þ ¼ 0 ð5Þ

�inun þ 1� 1

3
m2n2

� �
rzn þ

1

4

X
s

r us 
 un�sð Þ ¼ 0: ð6Þ

These two equations can be combined by taking the
divergence of equation (6) and multiplying equation (5) by
a factor i
n. Adding the resulting equations one easily gets

r2 þ k2n
� �

zn ¼
X
s

� i

2
nr 
 znun�sð Þ � 1

4
r2 us 
 un�sð Þ

� �
; ð7Þ

where

k2n ¼ n2

1� 1
3
m2n2

: ð8Þ

This equation represents a system of coupled nonlinear
wave equations. If the nonlinearity is insignificant, the
system is decoupled and the wave number for each
harmonic is slightly influenced by the frequency dispersion,
i.e., from equation (8) kn  n(1 + m2n2/6).
[15] In the remainder of this section, we shall present

first the approximate solutions inside the bays and in the
ocean. We shall follow R&M’s arguments [see also Mei,
1989, p. 593] that the nonlinearity is only important inside
the bays. The wave field in the ocean and the matching
conditions near the bay entrance can be approximated by
linear theory.

3.1. Solution in the Ocean

[16] Within the framework of the linear wave theory, the
free surface profile in the ocean can be viewed as the sum of
the incident wave, the reflected wave from the coast, and the
radiated wave from the bay entrances. Thus

z0n ¼ An cos knxþ zRn ; ð9Þ

where An is twice of the incident wave amplitude for the nth
harmonic and zn

R denotes the radiated wave from both bays.
Once again, if the width of each bay is small in comparison
with the bay length and the incident wavelength and if the

Figure 3. Definition sketch of idealized geometry for two
rectangular bays.

C05008 MARCOS ET AL.: NONLINEAR COUPLING BETWEEN TWO BAYS

4 of 11

C05008



distance between these two bays is larger than the
wavelength, we can obtain the radiated wave solution by
treating the bay entrances as two oscillatory point sources.
Thus

zRn ¼ nQ 1ð Þ
n

2
H

1ð Þ
0 knr1ð Þ þ nQ 2ð Þ

n

2
H

1ð Þ
0 knr2ð Þ ð10Þ

with

r1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and r2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y� dð Þ2

q
ð11Þ

and Qn
(1) and Qn

(2) are the volume fluxes for the nth
harmonic through the bay entrances at r1 = 0 and r2 = 0,
respectively, and H0

(1) is the Hankel function of the first
kind and of order zero. The distance between the bay
entrances has been denoted by d. Far away from the bay
entrances, r1, r2 ! 1, the Hankel functions behave as
periodic functions in knr1 and knr2, respectively, repre-
senting outgoing waves.
[17] To find Qn

(1) and Qn
(2) the solutions on the ocean side

need to be matched with the solutions inside the bays. The
matching will be done asymptotically. Thus we need to find
the inner expansions of the radiated waves in the vicinity of
each bay entrance. Near the entrance of the first bay (r1 = 0),
the asymptotic expansion of equation (10) can be obtained
by letting knr1 go to zero. Hence

zRn  nQ 1ð Þ
n

2
1þ 2i

p
ln
gknr1

2

� �
þ nQ 2ð Þ

n

2
H

1ð Þ
0 knr2ð Þ; knr1  0:

ð12Þ

Similarly, near the entrance of the second bay (r2 = 0), the
inner expansion becomes

zRn  nQ 2ð Þ
n

2
1þ 2i

p
ln
gknr2

2

� �
þ nQ 1ð Þ

n

2
H

1ð Þ
0 knr1ð Þ; knr2  0;

ð13Þ

in which lng = 0.5772157. The logarithmic singularities at
r1 = 0 and r2 = 0 confirm that the wave field behaves like an
oscillatory point source at the bay entrance. The inner
expansions of the wave field in the ocean toward the bay
entrances become

z0n  An þ zRn ; ð14Þ

in which zn
R is given by either equation (12) or equation (13).

While the incident wave heights An are known quantities,
Qn
(1) and Qn

(2) need to be determined through matching.

3.2. Solution in the Bays

[18] Because of the narrowness of the bay width as
compared to the characteristic wavelength, the nth harmonic
free surface displacement can be considered as independent
of y. Therefore equation (7) becomes

d2zn
dx2

þ k2nzn ¼
X
s

�i

2
n
d znun�sð Þ

dx
� 1

4

d2 usun�sð Þ
dx2

� �
; ð15Þ

where, now, us and un�s are one dimensional velocities. On
the other hand, from equations (5) and (6) is deduced that

dun

dx
¼ inzn 1þ o eð Þð Þ

un ¼ � i

n

dzn
dx

1þ o eð Þð Þ
: ð16Þ

Using these expressions, the right hand side terms of
equation (15) can be simplified in the following manner:

X
s

d znun�sð Þ
dx

¼
X
s

zn
dun�s

dx
þ dzn

dx
un�s

� �

¼
X
s

zni n� sð Þzn�s þ
dzn
dx

�i

n� s

dzn�s

dx

� �
ð17Þ

X
s

d2 usun�sð Þ
dx2

¼
X
s

us
d2un�s

dx2
þ d2us

dx2
un�s

� �

¼
X
s

s

n� s

dzs
dx

dzn�s

dx
� n� sð Þzn�szs

� �
: ð18Þ

The substitution of equations (17) and (18) into equation (15)
provides the final expression for the sea level variation:

d2z jð Þ
n

dx2
þ k2nz

jð Þ
n ¼ 1

2

X
s

n2 � s2
� �

z jð Þ
s z jð Þ

n�s

� 1

2

X
s 6¼n

nþ s

n� s

dz jð Þ
s

dx

dz jð Þ
n�s

dx
j ¼ 1; 2; ð19Þ

which is a system of coupled second-order ordinary
differential equations in terms of different free surface
harmonics inside each bay. To find solutions for these
equations, boundary conditions are required. At the end of
each bay, the no-flux boundary condition is imposed, i.e.,

dz jð Þ
n

dx
¼ 0; x ¼ �lj; ð20Þ

where j = 1, 2 denoting the jth bay. Near the bay entrance, the
solutions obtained from equation (19) must be matched with
the solutions in the vicinity of the bay entrances, where the
flow field is no longer one dimensional. To perform the
asymptotic matching, the asymptotic expression of the wave
field as kx ! 0 can be written in terms of a Taylor’s series
expansion,

z jð Þ
n  z jð Þ

n 0ð Þ þ x
dz jð Þ

n

dx
þ . . . : ð21Þ

To connect the wave field in the ocean and those in the
bays, we need to find the approximate solutions in the
vicinity of bay entrances. Because the width of the bay is
narrow, flow motions near the bay entrances (the near
field) are governed by the Laplace equation. Therefore, for
the right-angled bay entrance the solutions for the flow
field can be obtained via the conformal mapping method.
The details of the solution finding procedure are given by
Mei [1989, p. 199] and will not be repeated here. Only the
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outer expansions of the near field solutions for the nth
harmonic are given here.

z jð Þ
n  Mj

px
2bj

�Mj ln
e

2

� �
þ Cj; x < 0 ð22Þ

z jð Þ
n  Mj ln

prj
2bj

� �
þ Cj; x > 0: ð23Þ

Physically, while the near field solution on the bay side
represents oscillatory uniform flow in the x direction, on the
ocean side the solution denotes an oscillatory point source.
Matching of the inner and outer solutions on the bay sides
and the ocean side, i.e., matching equation (21) with
equation (22) and equation (14) with equation (23), yield a
set of eight linear algebraic equations for ten unknown
quantities, Mj, Cj, Qn

(j), zn
(j)(0) and dzn

(j)(0)/dx. After some
lengthy, but straightforward manipulations, we find the
following important relationships at the bay entrances:

in

k2n
Z 1ð Þ
n

dz 1ð Þ
n 0ð Þ
dx

þ z 1ð Þ
n 0ð Þ ¼ �ib2H

1ð Þ
0 kndð Þ dz

2ð Þ
n 0ð Þ
dx

þ An ð24Þ

in

k2n
Z 2ð Þ
n

dz 2ð Þ
n 0ð Þ
dx

þ z 2ð Þ
n 0ð Þ ¼ �ib1H

1ð Þ
0 kndð Þ dz

1ð Þ
n 0ð Þ
dx

þ An; ð25Þ

where

Z jð Þ
n ¼ k2nbj

n
1þ 2i

p
ln

2gknbj

pe

� �� �
j ¼ 1; 2 ð26Þ

is the entrance impedance for each bay in the absence of the
other bay. In summary, equation (19) represents a set of
second-order, nonlinear ordinary partial differential equa-
tions for zn

(j) inside the bays. Equations (24), (25), and (20)
constitute the necessary boundary conditions for equation
(19) as a set of two-point boundary value problems.
[19] The zeroth harmonic solutions correspond to mean

sea level changes and mean current, which can be obtained
by integrating the one-dimensional version of equations (5)
and (6) for each bay

u
jð Þ

0 ¼ � 1

2

X
s

z jð Þ
s u jð Þ

�s ð27Þ

z jð Þ
0 ¼ � 1

4

X
s

u jð Þ
s

 2 þ cj; ð28Þ

where cj ( j = 1, 2) are constants to be determined. We
remark here that the current velocity has satisfied the no-
flux conditions at the end of each bay. Assuming that the
mean sea level outside the bays has been properly adjusted
so that A0 = 0, we can readily show that the impedance
conditions (24) and (25) are satisfied for n = 0, with cj = 0.
Therefore the mean free surface displacement and the mean
velocity are of the order of O(e2) and will be ignored in the
nonlinear equations for other harmonics.

[20] Although the Fourier series in equation (19) are
infinite, we consider here that the response is only apprecia-
ble in the first three harmonics. For later use, the governing
equations for each of these harmonics in each bay can be
written in the following explicit forms.

n ¼ 1 :

d2z jð Þ
1

dx2
þ k21z

jð Þ
1 ¼ � 3

2
z jð Þ
2 z jð Þ

�1 þ z jð Þ
�2z

jð Þ
3

� �
� 4z jð Þ

3 z jð Þ
�2

þ 3

2

dz jð Þ
2

dx

dz jð Þ
�1

dx
þ 7

6

dz jð Þ
�2

dx

dz jð Þ
3

dx
; ð29Þ

n ¼ 2 :

d2z jð Þ
2

dx2
þ k22z

jð Þ
2 ¼ 3

2
z jð Þ
1 z jð Þ

1 � z jð Þ
3 z jð Þ

�1 �
3

2

dz jð Þ
1

dx

dz jð Þ
1

dx

þ 7

3

dz jð Þ
3

dx

dz jð Þ
�1

dx
; ð30Þ

n ¼ 3 :

d2z jð Þ
3

dx2
þ k23z

jð Þ
3 ¼ 13

2
z jð Þ
1 z jð Þ

2 � 7

2

dz jð Þ
1

dx

dz jð Þ
2

dx
: ð31Þ

They form, together with their complex conjugates, a
second-order nonlinear coupled system of 12 equations.

4. Numerical Resolution of the Two-Point
Boundary Value Problem

[21] The two-point boundary value problem derived in the
previous section is solved numerically by using the shooting
method [Press et al., 1989]. To do so, the second-order
differential equation system is first converted into a system
of first-order differential equations. This can be accom-
plished by introducing new variables hn

(j) = dzn
(j)/dx and

dhn
(j)/dx = d2zn

(j)/dx2. By substitutions, equations (29), (30),
and (31) are converted into a system of first-order differential
equations in terms of hn

(j) and zn
(j) for n = 1, 2, 3 and j = 1, 2.

Therefore, if only the first three harmonics are considered,
there are 12 resulting equations. Similarly, the boundary
conditions can also be expressed in terms of the new
variables. Since the numerical algorithm for the shooting
method adopted in this paper only deals with real variables,
the governing equations and boundary equations, which are
all written in terms of complex variables, are further decom-
posed into real and imaginary parts. The final governing
equations consist of 24 coupled first-order differential equa-
tions for Re(hn

(j)), Im(hn
(j)), Re(zn

(j)) and Im(zn
(j)) with 12 bound-

ary conditions at x = 0 and other 12 boundary conditions at
x = �lj.
[22] The shooting method employed is a standard method

and will be only briefly described here. In this method, we
first choose a set of values for all variables at the boundary,
x = �lj, which, however, must be consistent with the no-flux
boundary conditions (i.e., zn

(j) = 0). Therefore there are only
12 free initial guesses at the first boundary. These initial
guesses are used to integrate the system of ordinary differ-
ential equations as an initial value problem until arriving at
the other boundary, x = 0. The integration is done by means
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of a fifth-order Runge-Kutta method, which adjusts the
integration step size and monitors local truncation error. At
x = 0 we define a discrepancy vector F, whose dimension is
12 and whose components measure the residues of the
boundary conditions at x = 0. A globally convergent New-
ton’s method is used to find the initial values for which the
discrepancy vector F becomes negligible.

5. Results and Discussions

[23] Results are obtained for several problems, including
almost linear and fully nonlinear oscillations in a single bay
and nonlinear coupling between two adjacent bays. Some of
these cases, such as the single bay problem, have been
studied by other researchers and are reexamined here for the
purpose of confirming the accuracy of the present numerical
algorithm and establishing the background information for
further discussions on nonlinear coupling phenomena.

5.1. Nonlinear Oscillations in a Single Bay

[24] R&M’s numerical solutions for the nonlinear oscil-
lations in a single rectangular bay are based on a similar
formulation shown in this paper. However, their numerical
integration technique, the method of complementary func-
tions, is different from the shooting method used here. In
R&M, laboratory experiments were also performed for three

different bay lengths, which correspond to the first three
resonant modes of the first harmonic with the fixed incident
frequency w = 4.067 s�1. For each bay length three different
incident wave amplitudes were tested. The numerical values
for the dimensionless parameters are: l = 1.227, 4.230,
7.233; b = 0.169; A1 = 0.015, 0.027, 0.040. We remark
here that for these experiments while the dispersion param-
eter is fixed at m2 = 0.257 for all cases, the nonlinearity e
varies from 0.015 to 0.04 in the open ocean. Since the
waves inside the bay are resonated, the nonlinearity
becomes the same order of magnitude of the frequency
dispersion and both are quite significant.
[25] To ensure that our numerical algorithm is correctly

implemented, R&M’s cases are recalculated and the numer-
ical results are compared with their experimental data and
numerical solutions as well. In order to compare
both numerical solutions we have used an approximate
expression for the wave number, following R&M: kn

2 =
n2(1 + 1=3m

2n2). To obtain numerical solutions for a single
bay from the present formulation for a two-bay system, we
just need to set the length and width of the second inlet
equal to zero. Here only the case with the largest amplitude
(A1 = 0.04 or e = 0.04) is shown (see Figure 4). For the first
harmonic (Figure 4a), the numerical solutions obtained by
R&M and the present numerical solutions are very similar.
For the two shorter bays they are slightly higher than the

Figure 4. Dimensionless amplitudes in a single bay for the (a) first, (b) second, and (c) third harmonic
for three resonant bay lengths, coinciding with those used in R&M: 1.227, 4.23, and 7.233. Solid lines
represent the present results; dashed lines are the results obtained by R&M; dots are experimental data.
The results for the first harmonic are also compared with the linear solutions (dot-dashed lines).
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experimental data. As pointed out in R&M these discrep-
ancies could be due to the lack of inclusion of physical
dissipative mechanisms in the theoretical formulation.
However, for the longest bay (Figure 4a (bottom)), sol-
utions are very close to the experimental data. The higher
harmonics show larger discrepancies between R&M’s
computations and ours. These differences are due to the
different numerical methods used for solving the system of
equations. In the case of the second harmonic of shortest
bay (Figure 4b (top)), differences between experimental
data and numerical solutions are relatively significant. The
solutions for the third harmonic are also shown in the
same figure (Figure 4c). However, the magnitude of their
amplitudes is very small and the resolution of the exper-
imental data is too poor to make a serious comparison.
[26] The approximated expression for the wave number

used in these computations is valid when the frequency
dispersion effects are negligible. However, the dispersion
parameter used in the experimental setup is too large to be
considered insignificant. New computations using the com-
plete expression for the wave number, given by equation (8),
are plotted in Figure 5 for the second bay length. The first
harmonic is now closer to the experimental data, although it
is still larger. For the second harmonic, experimental data are
better reproduced by these numerical solutions (Figure 5b);
namely, amplitude envelopes of the second harmonic decay

slightly from the end of the bay toward the mouth of the bay.
On the other hand, R&M’s solutions did not capture this
feature.
[27] Because of the nonlinearity second harmonic and

third harmonics are generated. It is therefore not surprising
that the amplitude of the first harmonic, based on the
nonlinear theory, is smaller than the amplitude calculated
from the linear theory (Figure 4a). It is also true that the
efficiency of radiation damping, which is proportional to
knbln(knb), equation (26), is higher for higher harmonics.
Therefore the total response based on the nonlinear theory
maybe lower than that calculated from the linear theory.
[28] To further explore the nonlinear effects, response

curves for each harmonic are calculated in the frequency
range between k1l = 0.1 and k1l = 10, corresponding to 4.7�
10�5 < m2 < 0.47 with l being the longest bay length in
R&M’s experiments. The response curve is the amplitude of
each harmonic at the end of each bay, normalized y the
incident wave height, i.e., jz1j/A1, jz2j/A1, jz3j/A1. Here two
cases are considered: one for small amplitude incident
waves A1 = 0.01 and A2 = A3 = 0, and the second for finite
amplitude waves A1 = 0.1 and A2 = A3 = 0. The response
curves are shown in Figure 6.
[29] It is well known that for a narrow rectangular bay

the resonant modes can be roughly estimated as k1l = (n +
1/2)p, n = 0, 1, 2, 3. The fundamental (n = 0), first (n = 1)

Figure 5. Dimensionless amplitudes in a single bay of length 4.230 for the (a) first, (b) second, and
(c) third harmonics. Solid lines represent the present results computed with the complete expression for
the wave number; dashed lines are the results obtained by R&M; dots are experimental data. The results
for the first harmonic are also compared with the linear solutions (dot-dashed lines).

Figure 6. Amplification factors for the (a) first, (b) second, and (c) third harmonics in a single bay.
Results with e = 0.01 (shaded line) and e = 0.1 (black line) are shown. Numerical values denote the peak
frequencies in terms of k1l.
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and second (n = 2) resonant modes are approximately equal
to 1.57, 4.71, 7.85. Note that the first mode frequency is
exactly three times the fundamental mode in this rough
estimation. However, slight shifts of these resonant frequen-
cies due to radiation damping and nonlinearity are also
anticipated. These resonant modes are well represented by
the linear solutions of the first harmonic shown in Figure 6a,
i.e., k1l = 1.4, 4.3 and 7.1. When the nonlinearity is
important, higher harmonics are generated. And when the
incident wave frequency is one half of the fundamental
resonant frequency, the second harmonic of the incident
wave is expected to be resonated inside the bay. This
explains the appearance of the resonance peak of the second
harmonic amplification factor at k1l � 0.7 in Figure 6b. For
the same reason another resonance peak shows up in the
response curve of the second harmonic at k1l � 2.1, which
is roughly one half of the first resonant frequency, k1l � 4.3.
As discussed before that one third of the first resonant
frequency is approximately the same as the fundamental
resonance frequency. Therefore, if the incident wave fre-
quency is around k1l � 1.5 the corresponding third har-
monic is resonated (see Figure 6c). We should also point out
that the fundamental resonance frequency has shifted to
k1l = 1.2. Similar features also occur in the neighborhood of
higher resonant modes. For instance, when the incident
wave frequency is around k1l � 3.6, the corresponding
second harmonic has the frequency of k1l � 7.2, which is
very close to the second resonance mode of the bay.
Therefore the second harmonic is resonated and contributes
to almost one third of the total response at k1l � 3.6 (see
Figure 6b).

5.2. Nonlinear Coupling for Two Adjacent Bays

[30] Within the framework of linear shallow water theory,
Liu et al. [2003, 2004] presented analytical solutions for
coupled oscillations in two adjacent rectangular bays. A set
of geometrical and wave parameters were chosen in their
calculations for the amplification factors of each bay. These
parameters are representative of Ciutadella and Platja Gran
as shown in Figure 1 under the background wave conditions
(i.e., very small incident wave heights) and are given as l1 =
1000 m, l2 = 0.5l1, b1 = b2 = 0.05l1, h = 5.5 m, d = 0.1l1.
Response curves were again calculated in the frequency
range, 0.1 < k1l1 < 10, corresponding to 3.0 � 10�7 < m2 <
3.0 � 10�3. It is obvious that within this frequency range,
the frequency dispersion effects are insignificant. Since the
incident wave height is also very small, A1 = 0.01 and A2 =
A3 = 0, the Boussinesq equations reduce to the linear
shallow water equations.
[31] In Figure 7 the individual response curves, jz1j/A1,

jz2j/A1, jz3j/A1, for both bays are plotted for linear (A1 =
0.01, shaded lines) and nonlinear waves (A1 = 0.1, black
lines). For the small incident wave the responses of the
second and third harmonics are negligible. The total re-
sponse curve is almost entirely due to the first harmonic.
The linear solutions indicate again that in the first (longer)
bay the first three resonant modes are k1l1 = 1.4, 4.3, and 7.1
(Figure 7a (top)), which are the same as those for a single
bay (see Figure 6). The response curve is distorted between
the fundamental and the first resonant mode of the first bay
at a frequency around k1l1= 2.6 which corresponds to the
fundamental mode of the second (shorter) bay. In the second

bay (Figure 7b (top)), the fundamental resonant mode is
indeed located at k1l1 = 2.6. We remark here that because
the length of the shorter bay is exactly one half of the length
of the longer bay. Therefore, on the basis of the single bay
results the fundamental resonance frequency for the shorter
bay should be k1l2 � 1.4, which leads to k1l1 � 2.8. The
slight difference between the rough estimation (2.8) and the
actual calculated value (2.6) is caused by the interference of
two bays. In the response curve for the shorter bay the peak
at k1l1 = 1.4 is due to the influence of the fundamental mode
of the first bay at that frequency. The small peak at k1l1 =
4.3 also appears in the shorter bay, corresponding to the first
resonant mode of the first (longer) bay. These results
coincide with the linear solution shown by Liu et al. [2004].
[32] Comparing the nonlinear responses for the longer bay

in the coupled system with those for a single bay (Figure 6)
shows similar patterns of resonance peaks in all three
harmonics. However, because of coupling, an additional
peak for the first harmonic appears at k1l1 � 2.4, which
corresponds to the fundamental mode of the shorter (second)
bay. Furthermore, for the second harmonic the relative
importance of resonant peaks changes. For instance, the
response peak of the second harmonic at k1l1 � 2.1 for the

Figure 7. Response curves of the first three harmonics in
(a) the first (longer) bay and (b) the second (shorter) bay for
a dimensionless distance between the bays d = 0.1 l1.
Shaded lines are the results for the almost linear case (e =
0.01), and black lines are for the nonlinear case (e = 0.1).
Main peaks are labeled in terms of k1l1.
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longer bay of the coupled system (Figure 7a (middle)) is
bigger than that in the single bay case (Figure 6b). Similarly,
the response peak of the second harmonic at k1l1 � 1.3 (or
k1l1 � 0.7) in the shorter (longer) bay increases from 0.85 in
the single bay system (corresponding to k1l = 0.7 in Figure
6b) to more than 4 in the coupled system (Figure 7b
(middle)). These phenomena can be explained as follows.
At k1l1 � 1.3 the wave system is resonated in the longer bay.
The corresponding wave frequency of the second harmonic
is roughly k1l1 � 2.6, which is also very close to the
fundamental mode of the shorter bay k1l2 = 1.3, resulting
in the large increase in the second harmonic response in the
shorter bay. Likewise, at k1l1 � 2.4 (or k1l2 = 4.8) the
second bay is resonated and the corresponding second
harmonic has the wave frequency at k1l1 � 4.8, which is
very close to the first resonant mode of the longer bay.
Therefore the second harmonic of the incident wave at
k1l1 � 2.1 is resonated in the longer bay, yielding a
relatively high response. Finally, the large response of
the third harmonic in the shorter bay at incident frequency
k1l1 = 2.6 is because the corresponding third harmonic
frequency is roughly k1l1 = 7.2, which is very close to the
second resonate frequency of the bay.
[33] In order to compare the results of the present

analytical model with the field data, the amplifications
calculated from the present analytical solutions in terms
of the oscillation frequency inside the inlets under an
almost linear condition, with e = 0.01, and a nonlinear
condition, with e = 0.1, are shown in Figure 8. The total
amplification is calculated as the sum of the contribution of
all three harmonics that have the same frequency. There-
fore, to convert the response curves to the total amplifica-
tion at a particular frequency, say s, one needs to add up the
values of the response for the nth harmonic at a frequency
ns. Amplification peaks have been labeled with the
corresponding periods in physical dimensions for a better
comparison with field data. Nonlinear effects produce a
clear reduction of the fundamental resonant mode in inlet 1
(period T = 10 min). This reduction appears for a single
inlet as well and is not due to the coupling. In inlet 2,
however, the behavior is opposite, the nonlinear solution is
slightly larger than the linear one at the fundamental mode
(T = 5 min). This increase is clearly related to the presence
of the adjacent inlet and is the major manifestation of
nonlinear coupling. As previously showed (Figure 7) this
effect is primarily due to the contribution of the second
harmonic. The same behavior is also observed in the field
data (Figure 2), especially in the rissaga case, although the
increase of the resonant peak for the nonlinear case is much
more evident in the field observations.
[34] Other facts revealed in the field data are also present in

the analytical solutions. For example, the energy content of
the higher-order modes of Ciutadella (T = 4.1 min, 2.4 min)
increases during rissaga (Figure 2a). Similar increases are
also observed in the analytical solutions at T = 3.3 min
and 1.9 min as shown in Figure 8a. Observations show an
increase of energy during rissaga of the resonant responses
due to the coupling, located at T � 6 min for the first inlet
(Ciutadella) and T � 4 min for the second inlet (Platja
Gran). The same effect is present in the analytical solutions
(Figure 8). Finally, the peak that appears in inlet 2 because
of the coupling with the fundamental mode of inlet 1, which

is at 10.2 min, decreases with nonlinearity in both the
analytical solutions and observations. The latest is a conse-
quence of the smaller energy content in the fundamental
mode of inlet 1 under nonlinear conditions.

6. Concluding Remarks

[35] A field experiment in Ciutadella region provides
evidence on the resonance coupling between two bays
during periods with different forcing conditions. An analyt-
ical model has been developed in order to explain the
coupling effects and the different behaviors under linear
and nonlinear wave conditions. On the basis of the Boussi-
nesq equations we have studied theoretically the nonlinear
coupling of two adjacent narrow, rectangular bays. Detailed
analysis is presented for the case where the ratio of bay
lengths is exactly two. This particular length ratio sets up a
rather complex resonance coupling.
[36] Computed responses inside the bays reproduce the

observed resonant modes. In addition to the modes of each
inlet, the natural resonant modes of the adjacent inlet are
also present in each bay, because of the coupling. When

Figure 8. Amplifications computed for (a) inlet 1 and
(b) inlet 2 under almost linear (e = 0.01) (shaded lines) and
fully nonlinear conditions (e = 0.1) (black lines). Peaks are
labeled with their periods in minutes.
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nonlinearity is important the coupling mechanism becomes
more complex and the relative amplification of the responses
at different frequencies changes. The responses of both bays
during a period with high activity are well reproduced by the
model.
[37] The fact that analytical solutions demonstrate that the

greater amplification of the fundamental mode of Platja
Gran during a rissaga event can be explained as a nonlinear
coupling has important implications. During rissaga events
the amplifications are actually smaller than those predicted
by linear theory at Ciutadella, but are considerably larger at
Platja Gran. The generally accepted perception that nonlin-
earity may reduce the expected oscillations may be incorrect
under specific circumstances. Any attempt to simulate the
phenomenon to investigate the possible influence of any
planned actuations in the inlets, should therefore consider
not only the nonlinearity but also the presence of the
adjacent inlet.
[38] The results presented in this paper can be used as a

benchmark problem to verify more sophisticated transient
numerical models based on either Boussinesq equations or
shallow water equations. A laboratory experiment is also
being planned to explore the problem further. Dissipative
mechanisms such as entrance loss and bottom friction will
be then considered in the formulation.
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